Step |
Hyp |
Ref |
Expression |
1 |
|
sge0iunmpt.a |
|
2 |
|
sge0iunmpt.b |
|
3 |
|
sge0iunmpt.dj |
|
4 |
|
sge0iunmpt.c |
|
5 |
|
nfv |
|
6 |
|
nfcv |
|
7 |
|
nfiu1 |
|
8 |
|
nfcv |
|
9 |
7 8
|
nfmpt |
|
10 |
6 9
|
nffv |
|
11 |
|
nfmpt1 |
|
12 |
6 11
|
nffv |
|
13 |
10 12
|
nfeq |
|
14 |
2
|
ralrimiva |
|
15 |
|
iunexg |
|
16 |
1 14 15
|
syl2anc |
|
17 |
|
eliun |
|
18 |
17
|
biimpi |
|
19 |
18
|
adantl |
|
20 |
|
nfcv |
|
21 |
20 7
|
nfel |
|
22 |
5 21
|
nfan |
|
23 |
8
|
nfel1 |
|
24 |
4
|
3exp |
|
25 |
24
|
adantr |
|
26 |
22 23 25
|
rexlimd |
|
27 |
19 26
|
mpd |
|
28 |
|
eqid |
|
29 |
27 28
|
fmptd |
|
30 |
16 29
|
sge0xrcl |
|
31 |
30
|
3ad2ant1 |
|
32 |
|
id |
|
33 |
32
|
eqcomd |
|
34 |
33
|
adantl |
|
35 |
34
|
3adant1 |
|
36 |
16
|
adantr |
|
37 |
27
|
adantlr |
|
38 |
|
ssiun2 |
|
39 |
38
|
adantl |
|
40 |
36 37 39
|
sge0lessmpt |
|
41 |
40
|
3adant3 |
|
42 |
35 41
|
eqbrtrd |
|
43 |
31 42
|
xrgepnfd |
|
44 |
1
|
3ad2ant1 |
|
45 |
|
nfv |
|
46 |
|
nfcsb1v |
|
47 |
|
nfcsb1v |
|
48 |
46 47
|
nfel |
|
49 |
45 48
|
nfim |
|
50 |
|
eleq1w |
|
51 |
50
|
anbi2d |
|
52 |
|
csbeq1a |
|
53 |
|
csbeq1a |
|
54 |
52 53
|
eleq12d |
|
55 |
51 54
|
imbi12d |
|
56 |
49 55 2
|
chvarfv |
|
57 |
56
|
adantlr |
|
58 |
46 8
|
nfmpt |
|
59 |
|
nfcv |
|
60 |
58 46 59
|
nff |
|
61 |
45 60
|
nfim |
|
62 |
52
|
mpteq1d |
|
63 |
62 52
|
feq12d |
|
64 |
51 63
|
imbi12d |
|
65 |
24
|
imp31 |
|
66 |
|
eqid |
|
67 |
65 66
|
fmptd |
|
68 |
61 64 67
|
chvarfv |
|
69 |
68
|
adantlr |
|
70 |
57 69
|
sge0cl |
|
71 |
|
nfcv |
|
72 |
6 58
|
nffv |
|
73 |
62
|
fveq2d |
|
74 |
71 72 73
|
cbvmpt |
|
75 |
70 74
|
fmptd |
|
76 |
75
|
3adant3 |
|
77 |
|
id |
|
78 |
|
fvexd |
|
79 |
|
eqid |
|
80 |
79
|
elrnmpt1 |
|
81 |
77 78 80
|
syl2anc |
|
82 |
81
|
adantr |
|
83 |
34 82
|
eqeltrd |
|
84 |
83
|
3adant1 |
|
85 |
44 76 84
|
sge0pnfval |
|
86 |
43 85
|
eqtr4d |
|
87 |
86
|
3exp |
|
88 |
5 13 87
|
rexlimd |
|
89 |
88
|
imp |
|
90 |
|
simpl |
|
91 |
|
ralnex |
|
92 |
|
df-ne |
|
93 |
92
|
bicomi |
|
94 |
93
|
ralbii |
|
95 |
91 94
|
sylbb1 |
|
96 |
95
|
adantl |
|
97 |
1
|
adantr |
|
98 |
|
nfcv |
|
99 |
46 98
|
nfel |
|
100 |
45 99
|
nfim |
|
101 |
52
|
eleq1d |
|
102 |
51 101
|
imbi12d |
|
103 |
100 102 2
|
chvarfv |
|
104 |
103
|
adantlr |
|
105 |
|
nfcv |
|
106 |
105 46 52
|
cbvdisj |
|
107 |
3 106
|
sylib |
|
108 |
107
|
adantr |
|
109 |
|
nfv |
|
110 |
|
nfcsb1v |
|
111 |
110
|
nfel1 |
|
112 |
109 111
|
nfim |
|
113 |
|
eleq1w |
|
114 |
113
|
3anbi3d |
|
115 |
|
csbeq1a |
|
116 |
115
|
eleq1d |
|
117 |
114 116
|
imbi12d |
|
118 |
|
nfv |
|
119 |
20 46
|
nfel |
|
120 |
5 118 119
|
nf3an |
|
121 |
120 23
|
nfim |
|
122 |
52
|
eleq2d |
|
123 |
50 122
|
3anbi23d |
|
124 |
123
|
imbi1d |
|
125 |
121 124 4
|
chvarfv |
|
126 |
112 117 125
|
chvarfv |
|
127 |
126
|
3adant1r |
|
128 |
|
simpr |
|
129 |
|
simpl |
|
130 |
|
simpl |
|
131 |
|
simpr |
|
132 |
|
nfcv |
|
133 |
46 132
|
nfmpt |
|
134 |
6 133
|
nffv |
|
135 |
|
nfcv |
|
136 |
134 135
|
nfne |
|
137 |
|
nfcv |
|
138 |
137 110 115
|
cbvmpt |
|
139 |
138
|
a1i |
|
140 |
62 139
|
eqtrd |
|
141 |
140
|
fveq2d |
|
142 |
141
|
neeq1d |
|
143 |
136 142
|
rspc |
|
144 |
130 131 143
|
sylc |
|
145 |
128 129 144
|
syl2anc |
|
146 |
145
|
neneqd |
|
147 |
146
|
adantll |
|
148 |
126
|
3expa |
|
149 |
|
eqid |
|
150 |
148 149
|
fmptd |
|
151 |
150
|
adantlr |
|
152 |
104 151
|
sge0repnf |
|
153 |
147 152
|
mpbird |
|
154 |
137 110 115
|
cbvmpt |
|
155 |
105 46 52
|
cbviun |
|
156 |
155
|
mpteq1i |
|
157 |
154 156
|
eqtri |
|
158 |
157
|
fveq2i |
|
159 |
158 30
|
eqeltrrid |
|
160 |
159
|
adantr |
|
161 |
71 134 141
|
cbvmpt |
|
162 |
161
|
fveq2i |
|
163 |
2 67
|
sge0cl |
|
164 |
163 79
|
fmptd |
|
165 |
1 164
|
sge0xrcl |
|
166 |
162 165
|
eqeltrrid |
|
167 |
166
|
adantr |
|
168 |
|
eliun |
|
169 |
168
|
biimpi |
|
170 |
169
|
adantl |
|
171 |
|
nfv |
|
172 |
|
nfcv |
|
173 |
|
nfiu1 |
|
174 |
172 173
|
nfel |
|
175 |
171 174
|
nfan |
|
176 |
|
nfv |
|
177 |
148
|
exp31 |
|
178 |
177
|
adantr |
|
179 |
175 176 178
|
rexlimd |
|
180 |
170 179
|
mpd |
|
181 |
|
eqid |
|
182 |
180 181
|
fmptd |
|
183 |
182
|
adantr |
|
184 |
155 16
|
eqeltrrid |
|
185 |
184
|
adantr |
|
186 |
97 104 108 127 153 160 167 183 185
|
sge0iunmptlemre |
|
187 |
158
|
a1i |
|
188 |
162
|
a1i |
|
189 |
186 187 188
|
3eqtr4d |
|
190 |
90 96 189
|
syl2anc |
|
191 |
89 190
|
pm2.61dan |
|