Step |
Hyp |
Ref |
Expression |
1 |
|
sge0iunmpt.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
2 |
|
sge0iunmpt.b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑊 ) |
3 |
|
sge0iunmpt.dj |
⊢ ( 𝜑 → Disj 𝑥 ∈ 𝐴 𝐵 ) |
4 |
|
sge0iunmpt.c |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) → 𝐶 ∈ ( 0 [,] +∞ ) ) |
5 |
|
nfv |
⊢ Ⅎ 𝑥 𝜑 |
6 |
|
nfcv |
⊢ Ⅎ 𝑥 Σ^ |
7 |
|
nfiu1 |
⊢ Ⅎ 𝑥 ∪ 𝑥 ∈ 𝐴 𝐵 |
8 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐶 |
9 |
7 8
|
nfmpt |
⊢ Ⅎ 𝑥 ( 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↦ 𝐶 ) |
10 |
6 9
|
nffv |
⊢ Ⅎ 𝑥 ( Σ^ ‘ ( 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↦ 𝐶 ) ) |
11 |
|
nfmpt1 |
⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝐴 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) |
12 |
6 11
|
nffv |
⊢ Ⅎ 𝑥 ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) ) |
13 |
10 12
|
nfeq |
⊢ Ⅎ 𝑥 ( Σ^ ‘ ( 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↦ 𝐶 ) ) = ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) ) |
14 |
2
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑊 ) |
15 |
|
iunexg |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑊 ) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V ) |
16 |
1 14 15
|
syl2anc |
⊢ ( 𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V ) |
17 |
|
eliun |
⊢ ( 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃ 𝑥 ∈ 𝐴 𝑘 ∈ 𝐵 ) |
18 |
17
|
biimpi |
⊢ ( 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 → ∃ 𝑥 ∈ 𝐴 𝑘 ∈ 𝐵 ) |
19 |
18
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) → ∃ 𝑥 ∈ 𝐴 𝑘 ∈ 𝐵 ) |
20 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑘 |
21 |
20 7
|
nfel |
⊢ Ⅎ 𝑥 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 |
22 |
5 21
|
nfan |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
23 |
8
|
nfel1 |
⊢ Ⅎ 𝑥 𝐶 ∈ ( 0 [,] +∞ ) |
24 |
4
|
3exp |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → ( 𝑘 ∈ 𝐵 → 𝐶 ∈ ( 0 [,] +∞ ) ) ) ) |
25 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) → ( 𝑥 ∈ 𝐴 → ( 𝑘 ∈ 𝐵 → 𝐶 ∈ ( 0 [,] +∞ ) ) ) ) |
26 |
22 23 25
|
rexlimd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) → ( ∃ 𝑥 ∈ 𝐴 𝑘 ∈ 𝐵 → 𝐶 ∈ ( 0 [,] +∞ ) ) ) |
27 |
19 26
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) → 𝐶 ∈ ( 0 [,] +∞ ) ) |
28 |
|
eqid |
⊢ ( 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↦ 𝐶 ) = ( 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↦ 𝐶 ) |
29 |
27 28
|
fmptd |
⊢ ( 𝜑 → ( 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↦ 𝐶 ) : ∪ 𝑥 ∈ 𝐴 𝐵 ⟶ ( 0 [,] +∞ ) ) |
30 |
16 29
|
sge0xrcl |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↦ 𝐶 ) ) ∈ ℝ* ) |
31 |
30
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) = +∞ ) → ( Σ^ ‘ ( 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↦ 𝐶 ) ) ∈ ℝ* ) |
32 |
|
id |
⊢ ( ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) = +∞ → ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) = +∞ ) |
33 |
32
|
eqcomd |
⊢ ( ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) = +∞ → +∞ = ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) |
34 |
33
|
adantl |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) = +∞ ) → +∞ = ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) |
35 |
34
|
3adant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) = +∞ ) → +∞ = ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) |
36 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V ) |
37 |
27
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) → 𝐶 ∈ ( 0 [,] +∞ ) ) |
38 |
|
ssiun2 |
⊢ ( 𝑥 ∈ 𝐴 → 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
39 |
38
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
40 |
36 37 39
|
sge0lessmpt |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ≤ ( Σ^ ‘ ( 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↦ 𝐶 ) ) ) |
41 |
40
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) = +∞ ) → ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ≤ ( Σ^ ‘ ( 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↦ 𝐶 ) ) ) |
42 |
35 41
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) = +∞ ) → +∞ ≤ ( Σ^ ‘ ( 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↦ 𝐶 ) ) ) |
43 |
31 42
|
xrgepnfd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) = +∞ ) → ( Σ^ ‘ ( 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↦ 𝐶 ) ) = +∞ ) |
44 |
1
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) = +∞ ) → 𝐴 ∈ 𝑉 ) |
45 |
|
nfv |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) |
46 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 |
47 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝑊 |
48 |
46 47
|
nfel |
⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝑊 |
49 |
45 48
|
nfim |
⊢ Ⅎ 𝑥 ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝑊 ) |
50 |
|
eleq1w |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) ) |
51 |
50
|
anbi2d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ↔ ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) ) ) |
52 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑦 → 𝐵 = ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
53 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑦 → 𝑊 = ⦋ 𝑦 / 𝑥 ⦌ 𝑊 ) |
54 |
52 53
|
eleq12d |
⊢ ( 𝑥 = 𝑦 → ( 𝐵 ∈ 𝑊 ↔ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝑊 ) ) |
55 |
51 54
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑊 ) ↔ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝑊 ) ) ) |
56 |
49 55 2
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝑊 ) |
57 |
56
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝑊 ) |
58 |
46 8
|
nfmpt |
⊢ Ⅎ 𝑥 ( 𝑘 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↦ 𝐶 ) |
59 |
|
nfcv |
⊢ Ⅎ 𝑥 ( 0 [,] +∞ ) |
60 |
58 46 59
|
nff |
⊢ Ⅎ 𝑥 ( 𝑘 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↦ 𝐶 ) : ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ⟶ ( 0 [,] +∞ ) |
61 |
45 60
|
nfim |
⊢ Ⅎ 𝑥 ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑘 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↦ 𝐶 ) : ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ⟶ ( 0 [,] +∞ ) ) |
62 |
52
|
mpteq1d |
⊢ ( 𝑥 = 𝑦 → ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) = ( 𝑘 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↦ 𝐶 ) ) |
63 |
62 52
|
feq12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) : 𝐵 ⟶ ( 0 [,] +∞ ) ↔ ( 𝑘 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↦ 𝐶 ) : ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ⟶ ( 0 [,] +∞ ) ) ) |
64 |
51 63
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) : 𝐵 ⟶ ( 0 [,] +∞ ) ) ↔ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑘 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↦ 𝐶 ) : ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ⟶ ( 0 [,] +∞ ) ) ) ) |
65 |
24
|
imp31 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐵 ) → 𝐶 ∈ ( 0 [,] +∞ ) ) |
66 |
|
eqid |
⊢ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) = ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) |
67 |
65 66
|
fmptd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) : 𝐵 ⟶ ( 0 [,] +∞ ) ) |
68 |
61 64 67
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑘 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↦ 𝐶 ) : ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ⟶ ( 0 [,] +∞ ) ) |
69 |
68
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝑘 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↦ 𝐶 ) : ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ⟶ ( 0 [,] +∞ ) ) |
70 |
57 69
|
sge0cl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → ( Σ^ ‘ ( 𝑘 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↦ 𝐶 ) ) ∈ ( 0 [,] +∞ ) ) |
71 |
|
nfcv |
⊢ Ⅎ 𝑦 ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) |
72 |
6 58
|
nffv |
⊢ Ⅎ 𝑥 ( Σ^ ‘ ( 𝑘 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↦ 𝐶 ) ) |
73 |
62
|
fveq2d |
⊢ ( 𝑥 = 𝑦 → ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) = ( Σ^ ‘ ( 𝑘 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↦ 𝐶 ) ) ) |
74 |
71 72 73
|
cbvmpt |
⊢ ( 𝑥 ∈ 𝐴 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) = ( 𝑦 ∈ 𝐴 ↦ ( Σ^ ‘ ( 𝑘 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↦ 𝐶 ) ) ) |
75 |
70 74
|
fmptd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ∈ 𝐴 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) : 𝐴 ⟶ ( 0 [,] +∞ ) ) |
76 |
75
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) = +∞ ) → ( 𝑥 ∈ 𝐴 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) : 𝐴 ⟶ ( 0 [,] +∞ ) ) |
77 |
|
id |
⊢ ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐴 ) |
78 |
|
fvexd |
⊢ ( 𝑥 ∈ 𝐴 → ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ∈ V ) |
79 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) = ( 𝑥 ∈ 𝐴 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) |
80 |
79
|
elrnmpt1 |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ∈ V ) → ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ∈ ran ( 𝑥 ∈ 𝐴 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) ) |
81 |
77 78 80
|
syl2anc |
⊢ ( 𝑥 ∈ 𝐴 → ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ∈ ran ( 𝑥 ∈ 𝐴 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) ) |
82 |
81
|
adantr |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) = +∞ ) → ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ∈ ran ( 𝑥 ∈ 𝐴 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) ) |
83 |
34 82
|
eqeltrd |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) = +∞ ) → +∞ ∈ ran ( 𝑥 ∈ 𝐴 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) ) |
84 |
83
|
3adant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) = +∞ ) → +∞ ∈ ran ( 𝑥 ∈ 𝐴 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) ) |
85 |
44 76 84
|
sge0pnfval |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) = +∞ ) → ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) ) = +∞ ) |
86 |
43 85
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) = +∞ ) → ( Σ^ ‘ ( 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↦ 𝐶 ) ) = ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) ) ) |
87 |
86
|
3exp |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → ( ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) = +∞ → ( Σ^ ‘ ( 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↦ 𝐶 ) ) = ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) ) ) ) ) |
88 |
5 13 87
|
rexlimd |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐴 ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) = +∞ → ( Σ^ ‘ ( 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↦ 𝐶 ) ) = ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) ) ) ) |
89 |
88
|
imp |
⊢ ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝐴 ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) = +∞ ) → ( Σ^ ‘ ( 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↦ 𝐶 ) ) = ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) ) ) |
90 |
|
simpl |
⊢ ( ( 𝜑 ∧ ¬ ∃ 𝑥 ∈ 𝐴 ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) = +∞ ) → 𝜑 ) |
91 |
|
ralnex |
⊢ ( ∀ 𝑥 ∈ 𝐴 ¬ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) = +∞ ↔ ¬ ∃ 𝑥 ∈ 𝐴 ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) = +∞ ) |
92 |
|
df-ne |
⊢ ( ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ≠ +∞ ↔ ¬ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) = +∞ ) |
93 |
92
|
bicomi |
⊢ ( ¬ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) = +∞ ↔ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ≠ +∞ ) |
94 |
93
|
ralbii |
⊢ ( ∀ 𝑥 ∈ 𝐴 ¬ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) = +∞ ↔ ∀ 𝑥 ∈ 𝐴 ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ≠ +∞ ) |
95 |
91 94
|
sylbb1 |
⊢ ( ¬ ∃ 𝑥 ∈ 𝐴 ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) = +∞ → ∀ 𝑥 ∈ 𝐴 ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ≠ +∞ ) |
96 |
95
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ ∃ 𝑥 ∈ 𝐴 ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) = +∞ ) → ∀ 𝑥 ∈ 𝐴 ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ≠ +∞ ) |
97 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ≠ +∞ ) → 𝐴 ∈ 𝑉 ) |
98 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑊 |
99 |
46 98
|
nfel |
⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∈ 𝑊 |
100 |
45 99
|
nfim |
⊢ Ⅎ 𝑥 ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∈ 𝑊 ) |
101 |
52
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( 𝐵 ∈ 𝑊 ↔ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∈ 𝑊 ) ) |
102 |
51 101
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑊 ) ↔ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∈ 𝑊 ) ) ) |
103 |
100 102 2
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∈ 𝑊 ) |
104 |
103
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ≠ +∞ ) ∧ 𝑦 ∈ 𝐴 ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∈ 𝑊 ) |
105 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐵 |
106 |
105 46 52
|
cbvdisj |
⊢ ( Disj 𝑥 ∈ 𝐴 𝐵 ↔ Disj 𝑦 ∈ 𝐴 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
107 |
3 106
|
sylib |
⊢ ( 𝜑 → Disj 𝑦 ∈ 𝐴 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
108 |
107
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ≠ +∞ ) → Disj 𝑦 ∈ 𝐴 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
109 |
|
nfv |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝑦 ∈ 𝐴 ∧ 𝑗 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
110 |
|
nfcsb1v |
⊢ Ⅎ 𝑘 ⦋ 𝑗 / 𝑘 ⦌ 𝐶 |
111 |
110
|
nfel1 |
⊢ Ⅎ 𝑘 ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ∈ ( 0 [,] +∞ ) |
112 |
109 111
|
nfim |
⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ∧ 𝑗 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ∈ ( 0 [,] +∞ ) ) |
113 |
|
eleq1w |
⊢ ( 𝑘 = 𝑗 → ( 𝑘 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↔ 𝑗 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) |
114 |
113
|
3anbi3d |
⊢ ( 𝑘 = 𝑗 → ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ∧ 𝑘 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ↔ ( 𝜑 ∧ 𝑦 ∈ 𝐴 ∧ 𝑗 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) ) |
115 |
|
csbeq1a |
⊢ ( 𝑘 = 𝑗 → 𝐶 = ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) |
116 |
115
|
eleq1d |
⊢ ( 𝑘 = 𝑗 → ( 𝐶 ∈ ( 0 [,] +∞ ) ↔ ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ∈ ( 0 [,] +∞ ) ) ) |
117 |
114 116
|
imbi12d |
⊢ ( 𝑘 = 𝑗 → ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ∧ 𝑘 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) → 𝐶 ∈ ( 0 [,] +∞ ) ) ↔ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ∧ 𝑗 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ∈ ( 0 [,] +∞ ) ) ) ) |
118 |
|
nfv |
⊢ Ⅎ 𝑥 𝑦 ∈ 𝐴 |
119 |
20 46
|
nfel |
⊢ Ⅎ 𝑥 𝑘 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 |
120 |
5 118 119
|
nf3an |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ 𝑦 ∈ 𝐴 ∧ 𝑘 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
121 |
120 23
|
nfim |
⊢ Ⅎ 𝑥 ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ∧ 𝑘 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) → 𝐶 ∈ ( 0 [,] +∞ ) ) |
122 |
52
|
eleq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝑘 ∈ 𝐵 ↔ 𝑘 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) |
123 |
50 122
|
3anbi23d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) ↔ ( 𝜑 ∧ 𝑦 ∈ 𝐴 ∧ 𝑘 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) ) |
124 |
123
|
imbi1d |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) → 𝐶 ∈ ( 0 [,] +∞ ) ) ↔ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ∧ 𝑘 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) → 𝐶 ∈ ( 0 [,] +∞ ) ) ) ) |
125 |
121 124 4
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ∧ 𝑘 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) → 𝐶 ∈ ( 0 [,] +∞ ) ) |
126 |
112 117 125
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ∧ 𝑗 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ∈ ( 0 [,] +∞ ) ) |
127 |
126
|
3adant1r |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ≠ +∞ ) ∧ 𝑦 ∈ 𝐴 ∧ 𝑗 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ∈ ( 0 [,] +∞ ) ) |
128 |
|
simpr |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ≠ +∞ ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ 𝐴 ) |
129 |
|
simpl |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ≠ +∞ ∧ 𝑦 ∈ 𝐴 ) → ∀ 𝑥 ∈ 𝐴 ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ≠ +∞ ) |
130 |
|
simpl |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ≠ +∞ ) → 𝑦 ∈ 𝐴 ) |
131 |
|
simpr |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ≠ +∞ ) → ∀ 𝑥 ∈ 𝐴 ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ≠ +∞ ) |
132 |
|
nfcv |
⊢ Ⅎ 𝑥 ⦋ 𝑗 / 𝑘 ⦌ 𝐶 |
133 |
46 132
|
nfmpt |
⊢ Ⅎ 𝑥 ( 𝑗 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↦ ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) |
134 |
6 133
|
nffv |
⊢ Ⅎ 𝑥 ( Σ^ ‘ ( 𝑗 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↦ ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) ) |
135 |
|
nfcv |
⊢ Ⅎ 𝑥 +∞ |
136 |
134 135
|
nfne |
⊢ Ⅎ 𝑥 ( Σ^ ‘ ( 𝑗 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↦ ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) ) ≠ +∞ |
137 |
|
nfcv |
⊢ Ⅎ 𝑗 𝐶 |
138 |
137 110 115
|
cbvmpt |
⊢ ( 𝑘 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↦ 𝐶 ) = ( 𝑗 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↦ ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) |
139 |
138
|
a1i |
⊢ ( 𝑥 = 𝑦 → ( 𝑘 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↦ 𝐶 ) = ( 𝑗 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↦ ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) ) |
140 |
62 139
|
eqtrd |
⊢ ( 𝑥 = 𝑦 → ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) = ( 𝑗 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↦ ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) ) |
141 |
140
|
fveq2d |
⊢ ( 𝑥 = 𝑦 → ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) = ( Σ^ ‘ ( 𝑗 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↦ ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) ) ) |
142 |
141
|
neeq1d |
⊢ ( 𝑥 = 𝑦 → ( ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ≠ +∞ ↔ ( Σ^ ‘ ( 𝑗 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↦ ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) ) ≠ +∞ ) ) |
143 |
136 142
|
rspc |
⊢ ( 𝑦 ∈ 𝐴 → ( ∀ 𝑥 ∈ 𝐴 ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ≠ +∞ → ( Σ^ ‘ ( 𝑗 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↦ ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) ) ≠ +∞ ) ) |
144 |
130 131 143
|
sylc |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ≠ +∞ ) → ( Σ^ ‘ ( 𝑗 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↦ ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) ) ≠ +∞ ) |
145 |
128 129 144
|
syl2anc |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ≠ +∞ ∧ 𝑦 ∈ 𝐴 ) → ( Σ^ ‘ ( 𝑗 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↦ ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) ) ≠ +∞ ) |
146 |
145
|
neneqd |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ≠ +∞ ∧ 𝑦 ∈ 𝐴 ) → ¬ ( Σ^ ‘ ( 𝑗 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↦ ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) ) = +∞ ) |
147 |
146
|
adantll |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ≠ +∞ ) ∧ 𝑦 ∈ 𝐴 ) → ¬ ( Σ^ ‘ ( 𝑗 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↦ ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) ) = +∞ ) |
148 |
126
|
3expa |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑗 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ∈ ( 0 [,] +∞ ) ) |
149 |
|
eqid |
⊢ ( 𝑗 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↦ ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) = ( 𝑗 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↦ ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) |
150 |
148 149
|
fmptd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑗 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↦ ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) : ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ⟶ ( 0 [,] +∞ ) ) |
151 |
150
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ≠ +∞ ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝑗 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↦ ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) : ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ⟶ ( 0 [,] +∞ ) ) |
152 |
104 151
|
sge0repnf |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ≠ +∞ ) ∧ 𝑦 ∈ 𝐴 ) → ( ( Σ^ ‘ ( 𝑗 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↦ ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) ) ∈ ℝ ↔ ¬ ( Σ^ ‘ ( 𝑗 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↦ ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) ) = +∞ ) ) |
153 |
147 152
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ≠ +∞ ) ∧ 𝑦 ∈ 𝐴 ) → ( Σ^ ‘ ( 𝑗 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↦ ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) ) ∈ ℝ ) |
154 |
137 110 115
|
cbvmpt |
⊢ ( 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↦ 𝐶 ) = ( 𝑗 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↦ ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) |
155 |
105 46 52
|
cbviun |
⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑦 ∈ 𝐴 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 |
156 |
155
|
mpteq1i |
⊢ ( 𝑗 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↦ ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) = ( 𝑗 ∈ ∪ 𝑦 ∈ 𝐴 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↦ ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) |
157 |
154 156
|
eqtri |
⊢ ( 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↦ 𝐶 ) = ( 𝑗 ∈ ∪ 𝑦 ∈ 𝐴 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↦ ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) |
158 |
157
|
fveq2i |
⊢ ( Σ^ ‘ ( 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↦ 𝐶 ) ) = ( Σ^ ‘ ( 𝑗 ∈ ∪ 𝑦 ∈ 𝐴 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↦ ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) ) |
159 |
158 30
|
eqeltrrid |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ∪ 𝑦 ∈ 𝐴 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↦ ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) ) ∈ ℝ* ) |
160 |
159
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ≠ +∞ ) → ( Σ^ ‘ ( 𝑗 ∈ ∪ 𝑦 ∈ 𝐴 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↦ ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) ) ∈ ℝ* ) |
161 |
71 134 141
|
cbvmpt |
⊢ ( 𝑥 ∈ 𝐴 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) = ( 𝑦 ∈ 𝐴 ↦ ( Σ^ ‘ ( 𝑗 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↦ ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) ) ) |
162 |
161
|
fveq2i |
⊢ ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) ) = ( Σ^ ‘ ( 𝑦 ∈ 𝐴 ↦ ( Σ^ ‘ ( 𝑗 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↦ ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) ) ) ) |
163 |
2 67
|
sge0cl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ∈ ( 0 [,] +∞ ) ) |
164 |
163 79
|
fmptd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) : 𝐴 ⟶ ( 0 [,] +∞ ) ) |
165 |
1 164
|
sge0xrcl |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) ) ∈ ℝ* ) |
166 |
162 165
|
eqeltrrid |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑦 ∈ 𝐴 ↦ ( Σ^ ‘ ( 𝑗 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↦ ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) ) ) ) ∈ ℝ* ) |
167 |
166
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ≠ +∞ ) → ( Σ^ ‘ ( 𝑦 ∈ 𝐴 ↦ ( Σ^ ‘ ( 𝑗 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↦ ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) ) ) ) ∈ ℝ* ) |
168 |
|
eliun |
⊢ ( 𝑗 ∈ ∪ 𝑦 ∈ 𝐴 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↔ ∃ 𝑦 ∈ 𝐴 𝑗 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
169 |
168
|
biimpi |
⊢ ( 𝑗 ∈ ∪ 𝑦 ∈ 𝐴 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑗 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
170 |
169
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ∪ 𝑦 ∈ 𝐴 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) → ∃ 𝑦 ∈ 𝐴 𝑗 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
171 |
|
nfv |
⊢ Ⅎ 𝑦 𝜑 |
172 |
|
nfcv |
⊢ Ⅎ 𝑦 𝑗 |
173 |
|
nfiu1 |
⊢ Ⅎ 𝑦 ∪ 𝑦 ∈ 𝐴 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 |
174 |
172 173
|
nfel |
⊢ Ⅎ 𝑦 𝑗 ∈ ∪ 𝑦 ∈ 𝐴 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 |
175 |
171 174
|
nfan |
⊢ Ⅎ 𝑦 ( 𝜑 ∧ 𝑗 ∈ ∪ 𝑦 ∈ 𝐴 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
176 |
|
nfv |
⊢ Ⅎ 𝑦 ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ∈ ( 0 [,] +∞ ) |
177 |
148
|
exp31 |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐴 → ( 𝑗 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 → ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ∈ ( 0 [,] +∞ ) ) ) ) |
178 |
177
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ∪ 𝑦 ∈ 𝐴 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) → ( 𝑦 ∈ 𝐴 → ( 𝑗 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 → ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ∈ ( 0 [,] +∞ ) ) ) ) |
179 |
175 176 178
|
rexlimd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ∪ 𝑦 ∈ 𝐴 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) → ( ∃ 𝑦 ∈ 𝐴 𝑗 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 → ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ∈ ( 0 [,] +∞ ) ) ) |
180 |
170 179
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ∪ 𝑦 ∈ 𝐴 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ∈ ( 0 [,] +∞ ) ) |
181 |
|
eqid |
⊢ ( 𝑗 ∈ ∪ 𝑦 ∈ 𝐴 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↦ ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) = ( 𝑗 ∈ ∪ 𝑦 ∈ 𝐴 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↦ ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) |
182 |
180 181
|
fmptd |
⊢ ( 𝜑 → ( 𝑗 ∈ ∪ 𝑦 ∈ 𝐴 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↦ ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) : ∪ 𝑦 ∈ 𝐴 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ⟶ ( 0 [,] +∞ ) ) |
183 |
182
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ≠ +∞ ) → ( 𝑗 ∈ ∪ 𝑦 ∈ 𝐴 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↦ ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) : ∪ 𝑦 ∈ 𝐴 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ⟶ ( 0 [,] +∞ ) ) |
184 |
155 16
|
eqeltrrid |
⊢ ( 𝜑 → ∪ 𝑦 ∈ 𝐴 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∈ V ) |
185 |
184
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ≠ +∞ ) → ∪ 𝑦 ∈ 𝐴 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∈ V ) |
186 |
97 104 108 127 153 160 167 183 185
|
sge0iunmptlemre |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ≠ +∞ ) → ( Σ^ ‘ ( 𝑗 ∈ ∪ 𝑦 ∈ 𝐴 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↦ ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) ) = ( Σ^ ‘ ( 𝑦 ∈ 𝐴 ↦ ( Σ^ ‘ ( 𝑗 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↦ ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) ) ) ) ) |
187 |
158
|
a1i |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ≠ +∞ ) → ( Σ^ ‘ ( 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↦ 𝐶 ) ) = ( Σ^ ‘ ( 𝑗 ∈ ∪ 𝑦 ∈ 𝐴 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↦ ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) ) ) |
188 |
162
|
a1i |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ≠ +∞ ) → ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) ) = ( Σ^ ‘ ( 𝑦 ∈ 𝐴 ↦ ( Σ^ ‘ ( 𝑗 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↦ ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) ) ) ) ) |
189 |
186 187 188
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ≠ +∞ ) → ( Σ^ ‘ ( 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↦ 𝐶 ) ) = ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) ) ) |
190 |
90 96 189
|
syl2anc |
⊢ ( ( 𝜑 ∧ ¬ ∃ 𝑥 ∈ 𝐴 ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) = +∞ ) → ( Σ^ ‘ ( 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↦ 𝐶 ) ) = ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) ) ) |
191 |
89 190
|
pm2.61dan |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↦ 𝐶 ) ) = ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) ) ) |