| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sge0iunmpt.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 2 |
|
sge0iunmpt.b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑊 ) |
| 3 |
|
sge0iunmpt.dj |
⊢ ( 𝜑 → Disj 𝑥 ∈ 𝐴 𝐵 ) |
| 4 |
|
sge0iunmpt.c |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) → 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 5 |
|
nfv |
⊢ Ⅎ 𝑥 𝜑 |
| 6 |
|
nfcv |
⊢ Ⅎ 𝑥 Σ^ |
| 7 |
|
nfiu1 |
⊢ Ⅎ 𝑥 ∪ 𝑥 ∈ 𝐴 𝐵 |
| 8 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐶 |
| 9 |
7 8
|
nfmpt |
⊢ Ⅎ 𝑥 ( 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↦ 𝐶 ) |
| 10 |
6 9
|
nffv |
⊢ Ⅎ 𝑥 ( Σ^ ‘ ( 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↦ 𝐶 ) ) |
| 11 |
|
nfmpt1 |
⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝐴 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) |
| 12 |
6 11
|
nffv |
⊢ Ⅎ 𝑥 ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) ) |
| 13 |
10 12
|
nfeq |
⊢ Ⅎ 𝑥 ( Σ^ ‘ ( 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↦ 𝐶 ) ) = ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) ) |
| 14 |
2
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑊 ) |
| 15 |
|
iunexg |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑊 ) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V ) |
| 16 |
1 14 15
|
syl2anc |
⊢ ( 𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V ) |
| 17 |
|
eliun |
⊢ ( 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃ 𝑥 ∈ 𝐴 𝑘 ∈ 𝐵 ) |
| 18 |
17
|
biimpi |
⊢ ( 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 → ∃ 𝑥 ∈ 𝐴 𝑘 ∈ 𝐵 ) |
| 19 |
18
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) → ∃ 𝑥 ∈ 𝐴 𝑘 ∈ 𝐵 ) |
| 20 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑘 |
| 21 |
20 7
|
nfel |
⊢ Ⅎ 𝑥 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 |
| 22 |
5 21
|
nfan |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
| 23 |
8
|
nfel1 |
⊢ Ⅎ 𝑥 𝐶 ∈ ( 0 [,] +∞ ) |
| 24 |
4
|
3exp |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → ( 𝑘 ∈ 𝐵 → 𝐶 ∈ ( 0 [,] +∞ ) ) ) ) |
| 25 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) → ( 𝑥 ∈ 𝐴 → ( 𝑘 ∈ 𝐵 → 𝐶 ∈ ( 0 [,] +∞ ) ) ) ) |
| 26 |
22 23 25
|
rexlimd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) → ( ∃ 𝑥 ∈ 𝐴 𝑘 ∈ 𝐵 → 𝐶 ∈ ( 0 [,] +∞ ) ) ) |
| 27 |
19 26
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) → 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 28 |
|
eqid |
⊢ ( 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↦ 𝐶 ) = ( 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↦ 𝐶 ) |
| 29 |
27 28
|
fmptd |
⊢ ( 𝜑 → ( 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↦ 𝐶 ) : ∪ 𝑥 ∈ 𝐴 𝐵 ⟶ ( 0 [,] +∞ ) ) |
| 30 |
16 29
|
sge0xrcl |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↦ 𝐶 ) ) ∈ ℝ* ) |
| 31 |
30
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) = +∞ ) → ( Σ^ ‘ ( 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↦ 𝐶 ) ) ∈ ℝ* ) |
| 32 |
|
id |
⊢ ( ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) = +∞ → ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) = +∞ ) |
| 33 |
32
|
eqcomd |
⊢ ( ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) = +∞ → +∞ = ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) |
| 34 |
33
|
adantl |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) = +∞ ) → +∞ = ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) |
| 35 |
34
|
3adant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) = +∞ ) → +∞ = ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) |
| 36 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V ) |
| 37 |
27
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) → 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 38 |
|
ssiun2 |
⊢ ( 𝑥 ∈ 𝐴 → 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
| 39 |
38
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
| 40 |
36 37 39
|
sge0lessmpt |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ≤ ( Σ^ ‘ ( 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↦ 𝐶 ) ) ) |
| 41 |
40
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) = +∞ ) → ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ≤ ( Σ^ ‘ ( 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↦ 𝐶 ) ) ) |
| 42 |
35 41
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) = +∞ ) → +∞ ≤ ( Σ^ ‘ ( 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↦ 𝐶 ) ) ) |
| 43 |
31 42
|
xrgepnfd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) = +∞ ) → ( Σ^ ‘ ( 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↦ 𝐶 ) ) = +∞ ) |
| 44 |
1
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) = +∞ ) → 𝐴 ∈ 𝑉 ) |
| 45 |
|
nfv |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) |
| 46 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 |
| 47 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝑊 |
| 48 |
46 47
|
nfel |
⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝑊 |
| 49 |
45 48
|
nfim |
⊢ Ⅎ 𝑥 ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝑊 ) |
| 50 |
|
eleq1w |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) ) |
| 51 |
50
|
anbi2d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ↔ ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) ) ) |
| 52 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑦 → 𝐵 = ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
| 53 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑦 → 𝑊 = ⦋ 𝑦 / 𝑥 ⦌ 𝑊 ) |
| 54 |
52 53
|
eleq12d |
⊢ ( 𝑥 = 𝑦 → ( 𝐵 ∈ 𝑊 ↔ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝑊 ) ) |
| 55 |
51 54
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑊 ) ↔ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝑊 ) ) ) |
| 56 |
49 55 2
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝑊 ) |
| 57 |
56
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝑊 ) |
| 58 |
46 8
|
nfmpt |
⊢ Ⅎ 𝑥 ( 𝑘 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↦ 𝐶 ) |
| 59 |
|
nfcv |
⊢ Ⅎ 𝑥 ( 0 [,] +∞ ) |
| 60 |
58 46 59
|
nff |
⊢ Ⅎ 𝑥 ( 𝑘 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↦ 𝐶 ) : ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ⟶ ( 0 [,] +∞ ) |
| 61 |
45 60
|
nfim |
⊢ Ⅎ 𝑥 ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑘 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↦ 𝐶 ) : ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ⟶ ( 0 [,] +∞ ) ) |
| 62 |
52
|
mpteq1d |
⊢ ( 𝑥 = 𝑦 → ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) = ( 𝑘 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↦ 𝐶 ) ) |
| 63 |
62 52
|
feq12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) : 𝐵 ⟶ ( 0 [,] +∞ ) ↔ ( 𝑘 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↦ 𝐶 ) : ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ⟶ ( 0 [,] +∞ ) ) ) |
| 64 |
51 63
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) : 𝐵 ⟶ ( 0 [,] +∞ ) ) ↔ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑘 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↦ 𝐶 ) : ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ⟶ ( 0 [,] +∞ ) ) ) ) |
| 65 |
24
|
imp31 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐵 ) → 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 66 |
|
eqid |
⊢ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) = ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) |
| 67 |
65 66
|
fmptd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) : 𝐵 ⟶ ( 0 [,] +∞ ) ) |
| 68 |
61 64 67
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑘 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↦ 𝐶 ) : ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ⟶ ( 0 [,] +∞ ) ) |
| 69 |
68
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝑘 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↦ 𝐶 ) : ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ⟶ ( 0 [,] +∞ ) ) |
| 70 |
57 69
|
sge0cl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → ( Σ^ ‘ ( 𝑘 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↦ 𝐶 ) ) ∈ ( 0 [,] +∞ ) ) |
| 71 |
|
nfcv |
⊢ Ⅎ 𝑦 ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) |
| 72 |
6 58
|
nffv |
⊢ Ⅎ 𝑥 ( Σ^ ‘ ( 𝑘 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↦ 𝐶 ) ) |
| 73 |
62
|
fveq2d |
⊢ ( 𝑥 = 𝑦 → ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) = ( Σ^ ‘ ( 𝑘 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↦ 𝐶 ) ) ) |
| 74 |
71 72 73
|
cbvmpt |
⊢ ( 𝑥 ∈ 𝐴 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) = ( 𝑦 ∈ 𝐴 ↦ ( Σ^ ‘ ( 𝑘 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↦ 𝐶 ) ) ) |
| 75 |
70 74
|
fmptd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ∈ 𝐴 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) : 𝐴 ⟶ ( 0 [,] +∞ ) ) |
| 76 |
75
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) = +∞ ) → ( 𝑥 ∈ 𝐴 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) : 𝐴 ⟶ ( 0 [,] +∞ ) ) |
| 77 |
|
id |
⊢ ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐴 ) |
| 78 |
|
fvexd |
⊢ ( 𝑥 ∈ 𝐴 → ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ∈ V ) |
| 79 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) = ( 𝑥 ∈ 𝐴 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) |
| 80 |
79
|
elrnmpt1 |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ∈ V ) → ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ∈ ran ( 𝑥 ∈ 𝐴 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) ) |
| 81 |
77 78 80
|
syl2anc |
⊢ ( 𝑥 ∈ 𝐴 → ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ∈ ran ( 𝑥 ∈ 𝐴 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) ) |
| 82 |
81
|
adantr |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) = +∞ ) → ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ∈ ran ( 𝑥 ∈ 𝐴 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) ) |
| 83 |
34 82
|
eqeltrd |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) = +∞ ) → +∞ ∈ ran ( 𝑥 ∈ 𝐴 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) ) |
| 84 |
83
|
3adant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) = +∞ ) → +∞ ∈ ran ( 𝑥 ∈ 𝐴 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) ) |
| 85 |
44 76 84
|
sge0pnfval |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) = +∞ ) → ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) ) = +∞ ) |
| 86 |
43 85
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) = +∞ ) → ( Σ^ ‘ ( 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↦ 𝐶 ) ) = ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) ) ) |
| 87 |
86
|
3exp |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → ( ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) = +∞ → ( Σ^ ‘ ( 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↦ 𝐶 ) ) = ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) ) ) ) ) |
| 88 |
5 13 87
|
rexlimd |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐴 ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) = +∞ → ( Σ^ ‘ ( 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↦ 𝐶 ) ) = ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) ) ) ) |
| 89 |
88
|
imp |
⊢ ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝐴 ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) = +∞ ) → ( Σ^ ‘ ( 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↦ 𝐶 ) ) = ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) ) ) |
| 90 |
|
simpl |
⊢ ( ( 𝜑 ∧ ¬ ∃ 𝑥 ∈ 𝐴 ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) = +∞ ) → 𝜑 ) |
| 91 |
|
ralnex |
⊢ ( ∀ 𝑥 ∈ 𝐴 ¬ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) = +∞ ↔ ¬ ∃ 𝑥 ∈ 𝐴 ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) = +∞ ) |
| 92 |
|
df-ne |
⊢ ( ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ≠ +∞ ↔ ¬ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) = +∞ ) |
| 93 |
92
|
bicomi |
⊢ ( ¬ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) = +∞ ↔ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ≠ +∞ ) |
| 94 |
93
|
ralbii |
⊢ ( ∀ 𝑥 ∈ 𝐴 ¬ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) = +∞ ↔ ∀ 𝑥 ∈ 𝐴 ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ≠ +∞ ) |
| 95 |
91 94
|
sylbb1 |
⊢ ( ¬ ∃ 𝑥 ∈ 𝐴 ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) = +∞ → ∀ 𝑥 ∈ 𝐴 ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ≠ +∞ ) |
| 96 |
95
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ ∃ 𝑥 ∈ 𝐴 ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) = +∞ ) → ∀ 𝑥 ∈ 𝐴 ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ≠ +∞ ) |
| 97 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ≠ +∞ ) → 𝐴 ∈ 𝑉 ) |
| 98 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑊 |
| 99 |
46 98
|
nfel |
⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∈ 𝑊 |
| 100 |
45 99
|
nfim |
⊢ Ⅎ 𝑥 ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∈ 𝑊 ) |
| 101 |
52
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( 𝐵 ∈ 𝑊 ↔ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∈ 𝑊 ) ) |
| 102 |
51 101
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑊 ) ↔ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∈ 𝑊 ) ) ) |
| 103 |
100 102 2
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∈ 𝑊 ) |
| 104 |
103
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ≠ +∞ ) ∧ 𝑦 ∈ 𝐴 ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∈ 𝑊 ) |
| 105 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐵 |
| 106 |
105 46 52
|
cbvdisj |
⊢ ( Disj 𝑥 ∈ 𝐴 𝐵 ↔ Disj 𝑦 ∈ 𝐴 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
| 107 |
3 106
|
sylib |
⊢ ( 𝜑 → Disj 𝑦 ∈ 𝐴 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
| 108 |
107
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ≠ +∞ ) → Disj 𝑦 ∈ 𝐴 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
| 109 |
|
nfv |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝑦 ∈ 𝐴 ∧ 𝑗 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
| 110 |
|
nfcsb1v |
⊢ Ⅎ 𝑘 ⦋ 𝑗 / 𝑘 ⦌ 𝐶 |
| 111 |
110
|
nfel1 |
⊢ Ⅎ 𝑘 ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ∈ ( 0 [,] +∞ ) |
| 112 |
109 111
|
nfim |
⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ∧ 𝑗 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 113 |
|
eleq1w |
⊢ ( 𝑘 = 𝑗 → ( 𝑘 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↔ 𝑗 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) |
| 114 |
113
|
3anbi3d |
⊢ ( 𝑘 = 𝑗 → ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ∧ 𝑘 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ↔ ( 𝜑 ∧ 𝑦 ∈ 𝐴 ∧ 𝑗 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) ) |
| 115 |
|
csbeq1a |
⊢ ( 𝑘 = 𝑗 → 𝐶 = ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) |
| 116 |
115
|
eleq1d |
⊢ ( 𝑘 = 𝑗 → ( 𝐶 ∈ ( 0 [,] +∞ ) ↔ ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ∈ ( 0 [,] +∞ ) ) ) |
| 117 |
114 116
|
imbi12d |
⊢ ( 𝑘 = 𝑗 → ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ∧ 𝑘 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) → 𝐶 ∈ ( 0 [,] +∞ ) ) ↔ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ∧ 𝑗 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ∈ ( 0 [,] +∞ ) ) ) ) |
| 118 |
|
nfv |
⊢ Ⅎ 𝑥 𝑦 ∈ 𝐴 |
| 119 |
20 46
|
nfel |
⊢ Ⅎ 𝑥 𝑘 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 |
| 120 |
5 118 119
|
nf3an |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ 𝑦 ∈ 𝐴 ∧ 𝑘 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
| 121 |
120 23
|
nfim |
⊢ Ⅎ 𝑥 ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ∧ 𝑘 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) → 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 122 |
52
|
eleq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝑘 ∈ 𝐵 ↔ 𝑘 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) |
| 123 |
50 122
|
3anbi23d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) ↔ ( 𝜑 ∧ 𝑦 ∈ 𝐴 ∧ 𝑘 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) ) |
| 124 |
123
|
imbi1d |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) → 𝐶 ∈ ( 0 [,] +∞ ) ) ↔ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ∧ 𝑘 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) → 𝐶 ∈ ( 0 [,] +∞ ) ) ) ) |
| 125 |
121 124 4
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ∧ 𝑘 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) → 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 126 |
112 117 125
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ∧ 𝑗 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 127 |
126
|
3adant1r |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ≠ +∞ ) ∧ 𝑦 ∈ 𝐴 ∧ 𝑗 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 128 |
|
simpr |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ≠ +∞ ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ 𝐴 ) |
| 129 |
|
simpl |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ≠ +∞ ∧ 𝑦 ∈ 𝐴 ) → ∀ 𝑥 ∈ 𝐴 ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ≠ +∞ ) |
| 130 |
|
simpl |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ≠ +∞ ) → 𝑦 ∈ 𝐴 ) |
| 131 |
|
simpr |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ≠ +∞ ) → ∀ 𝑥 ∈ 𝐴 ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ≠ +∞ ) |
| 132 |
|
nfcv |
⊢ Ⅎ 𝑥 ⦋ 𝑗 / 𝑘 ⦌ 𝐶 |
| 133 |
46 132
|
nfmpt |
⊢ Ⅎ 𝑥 ( 𝑗 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↦ ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) |
| 134 |
6 133
|
nffv |
⊢ Ⅎ 𝑥 ( Σ^ ‘ ( 𝑗 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↦ ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) ) |
| 135 |
|
nfcv |
⊢ Ⅎ 𝑥 +∞ |
| 136 |
134 135
|
nfne |
⊢ Ⅎ 𝑥 ( Σ^ ‘ ( 𝑗 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↦ ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) ) ≠ +∞ |
| 137 |
|
nfcv |
⊢ Ⅎ 𝑗 𝐶 |
| 138 |
137 110 115
|
cbvmpt |
⊢ ( 𝑘 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↦ 𝐶 ) = ( 𝑗 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↦ ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) |
| 139 |
138
|
a1i |
⊢ ( 𝑥 = 𝑦 → ( 𝑘 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↦ 𝐶 ) = ( 𝑗 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↦ ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) ) |
| 140 |
62 139
|
eqtrd |
⊢ ( 𝑥 = 𝑦 → ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) = ( 𝑗 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↦ ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) ) |
| 141 |
140
|
fveq2d |
⊢ ( 𝑥 = 𝑦 → ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) = ( Σ^ ‘ ( 𝑗 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↦ ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) ) ) |
| 142 |
141
|
neeq1d |
⊢ ( 𝑥 = 𝑦 → ( ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ≠ +∞ ↔ ( Σ^ ‘ ( 𝑗 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↦ ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) ) ≠ +∞ ) ) |
| 143 |
136 142
|
rspc |
⊢ ( 𝑦 ∈ 𝐴 → ( ∀ 𝑥 ∈ 𝐴 ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ≠ +∞ → ( Σ^ ‘ ( 𝑗 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↦ ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) ) ≠ +∞ ) ) |
| 144 |
130 131 143
|
sylc |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ≠ +∞ ) → ( Σ^ ‘ ( 𝑗 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↦ ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) ) ≠ +∞ ) |
| 145 |
128 129 144
|
syl2anc |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ≠ +∞ ∧ 𝑦 ∈ 𝐴 ) → ( Σ^ ‘ ( 𝑗 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↦ ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) ) ≠ +∞ ) |
| 146 |
145
|
neneqd |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ≠ +∞ ∧ 𝑦 ∈ 𝐴 ) → ¬ ( Σ^ ‘ ( 𝑗 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↦ ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) ) = +∞ ) |
| 147 |
146
|
adantll |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ≠ +∞ ) ∧ 𝑦 ∈ 𝐴 ) → ¬ ( Σ^ ‘ ( 𝑗 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↦ ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) ) = +∞ ) |
| 148 |
126
|
3expa |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑗 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 149 |
|
eqid |
⊢ ( 𝑗 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↦ ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) = ( 𝑗 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↦ ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) |
| 150 |
148 149
|
fmptd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑗 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↦ ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) : ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ⟶ ( 0 [,] +∞ ) ) |
| 151 |
150
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ≠ +∞ ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝑗 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↦ ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) : ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ⟶ ( 0 [,] +∞ ) ) |
| 152 |
104 151
|
sge0repnf |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ≠ +∞ ) ∧ 𝑦 ∈ 𝐴 ) → ( ( Σ^ ‘ ( 𝑗 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↦ ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) ) ∈ ℝ ↔ ¬ ( Σ^ ‘ ( 𝑗 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↦ ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) ) = +∞ ) ) |
| 153 |
147 152
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ≠ +∞ ) ∧ 𝑦 ∈ 𝐴 ) → ( Σ^ ‘ ( 𝑗 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↦ ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) ) ∈ ℝ ) |
| 154 |
137 110 115
|
cbvmpt |
⊢ ( 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↦ 𝐶 ) = ( 𝑗 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↦ ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) |
| 155 |
105 46 52
|
cbviun |
⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑦 ∈ 𝐴 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 |
| 156 |
155
|
mpteq1i |
⊢ ( 𝑗 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↦ ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) = ( 𝑗 ∈ ∪ 𝑦 ∈ 𝐴 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↦ ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) |
| 157 |
154 156
|
eqtri |
⊢ ( 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↦ 𝐶 ) = ( 𝑗 ∈ ∪ 𝑦 ∈ 𝐴 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↦ ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) |
| 158 |
157
|
fveq2i |
⊢ ( Σ^ ‘ ( 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↦ 𝐶 ) ) = ( Σ^ ‘ ( 𝑗 ∈ ∪ 𝑦 ∈ 𝐴 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↦ ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) ) |
| 159 |
158 30
|
eqeltrrid |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ∪ 𝑦 ∈ 𝐴 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↦ ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) ) ∈ ℝ* ) |
| 160 |
159
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ≠ +∞ ) → ( Σ^ ‘ ( 𝑗 ∈ ∪ 𝑦 ∈ 𝐴 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↦ ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) ) ∈ ℝ* ) |
| 161 |
71 134 141
|
cbvmpt |
⊢ ( 𝑥 ∈ 𝐴 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) = ( 𝑦 ∈ 𝐴 ↦ ( Σ^ ‘ ( 𝑗 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↦ ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) ) ) |
| 162 |
161
|
fveq2i |
⊢ ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) ) = ( Σ^ ‘ ( 𝑦 ∈ 𝐴 ↦ ( Σ^ ‘ ( 𝑗 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↦ ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) ) ) ) |
| 163 |
2 67
|
sge0cl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ∈ ( 0 [,] +∞ ) ) |
| 164 |
163 79
|
fmptd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) : 𝐴 ⟶ ( 0 [,] +∞ ) ) |
| 165 |
1 164
|
sge0xrcl |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) ) ∈ ℝ* ) |
| 166 |
162 165
|
eqeltrrid |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑦 ∈ 𝐴 ↦ ( Σ^ ‘ ( 𝑗 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↦ ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) ) ) ) ∈ ℝ* ) |
| 167 |
166
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ≠ +∞ ) → ( Σ^ ‘ ( 𝑦 ∈ 𝐴 ↦ ( Σ^ ‘ ( 𝑗 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↦ ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) ) ) ) ∈ ℝ* ) |
| 168 |
|
eliun |
⊢ ( 𝑗 ∈ ∪ 𝑦 ∈ 𝐴 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↔ ∃ 𝑦 ∈ 𝐴 𝑗 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
| 169 |
168
|
biimpi |
⊢ ( 𝑗 ∈ ∪ 𝑦 ∈ 𝐴 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑗 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
| 170 |
169
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ∪ 𝑦 ∈ 𝐴 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) → ∃ 𝑦 ∈ 𝐴 𝑗 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
| 171 |
|
nfv |
⊢ Ⅎ 𝑦 𝜑 |
| 172 |
|
nfcv |
⊢ Ⅎ 𝑦 𝑗 |
| 173 |
|
nfiu1 |
⊢ Ⅎ 𝑦 ∪ 𝑦 ∈ 𝐴 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 |
| 174 |
172 173
|
nfel |
⊢ Ⅎ 𝑦 𝑗 ∈ ∪ 𝑦 ∈ 𝐴 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 |
| 175 |
171 174
|
nfan |
⊢ Ⅎ 𝑦 ( 𝜑 ∧ 𝑗 ∈ ∪ 𝑦 ∈ 𝐴 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
| 176 |
|
nfv |
⊢ Ⅎ 𝑦 ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ∈ ( 0 [,] +∞ ) |
| 177 |
148
|
exp31 |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐴 → ( 𝑗 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 → ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ∈ ( 0 [,] +∞ ) ) ) ) |
| 178 |
177
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ∪ 𝑦 ∈ 𝐴 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) → ( 𝑦 ∈ 𝐴 → ( 𝑗 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 → ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ∈ ( 0 [,] +∞ ) ) ) ) |
| 179 |
175 176 178
|
rexlimd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ∪ 𝑦 ∈ 𝐴 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) → ( ∃ 𝑦 ∈ 𝐴 𝑗 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 → ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ∈ ( 0 [,] +∞ ) ) ) |
| 180 |
170 179
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ∪ 𝑦 ∈ 𝐴 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 181 |
|
eqid |
⊢ ( 𝑗 ∈ ∪ 𝑦 ∈ 𝐴 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↦ ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) = ( 𝑗 ∈ ∪ 𝑦 ∈ 𝐴 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↦ ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) |
| 182 |
180 181
|
fmptd |
⊢ ( 𝜑 → ( 𝑗 ∈ ∪ 𝑦 ∈ 𝐴 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↦ ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) : ∪ 𝑦 ∈ 𝐴 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ⟶ ( 0 [,] +∞ ) ) |
| 183 |
182
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ≠ +∞ ) → ( 𝑗 ∈ ∪ 𝑦 ∈ 𝐴 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↦ ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) : ∪ 𝑦 ∈ 𝐴 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ⟶ ( 0 [,] +∞ ) ) |
| 184 |
155 16
|
eqeltrrid |
⊢ ( 𝜑 → ∪ 𝑦 ∈ 𝐴 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∈ V ) |
| 185 |
184
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ≠ +∞ ) → ∪ 𝑦 ∈ 𝐴 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∈ V ) |
| 186 |
97 104 108 127 153 160 167 183 185
|
sge0iunmptlemre |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ≠ +∞ ) → ( Σ^ ‘ ( 𝑗 ∈ ∪ 𝑦 ∈ 𝐴 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↦ ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) ) = ( Σ^ ‘ ( 𝑦 ∈ 𝐴 ↦ ( Σ^ ‘ ( 𝑗 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↦ ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) ) ) ) ) |
| 187 |
158
|
a1i |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ≠ +∞ ) → ( Σ^ ‘ ( 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↦ 𝐶 ) ) = ( Σ^ ‘ ( 𝑗 ∈ ∪ 𝑦 ∈ 𝐴 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↦ ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) ) ) |
| 188 |
162
|
a1i |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ≠ +∞ ) → ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) ) = ( Σ^ ‘ ( 𝑦 ∈ 𝐴 ↦ ( Σ^ ‘ ( 𝑗 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↦ ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) ) ) ) ) |
| 189 |
186 187 188
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ≠ +∞ ) → ( Σ^ ‘ ( 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↦ 𝐶 ) ) = ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) ) ) |
| 190 |
90 96 189
|
syl2anc |
⊢ ( ( 𝜑 ∧ ¬ ∃ 𝑥 ∈ 𝐴 ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) = +∞ ) → ( Σ^ ‘ ( 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↦ 𝐶 ) ) = ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) ) ) |
| 191 |
89 190
|
pm2.61dan |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↦ 𝐶 ) ) = ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) ) ) |