| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sge0iunmpt.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑉 ) | 
						
							| 2 |  | sge0iunmpt.b | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  𝑊 ) | 
						
							| 3 |  | sge0iunmpt.dj | ⊢ ( 𝜑  →  Disj  𝑥  ∈  𝐴 𝐵 ) | 
						
							| 4 |  | sge0iunmpt.c | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴  ∧  𝑘  ∈  𝐵 )  →  𝐶  ∈  ( 0 [,] +∞ ) ) | 
						
							| 5 |  | nfv | ⊢ Ⅎ 𝑥 𝜑 | 
						
							| 6 |  | nfcv | ⊢ Ⅎ 𝑥 Σ^ | 
						
							| 7 |  | nfiu1 | ⊢ Ⅎ 𝑥 ∪  𝑥  ∈  𝐴 𝐵 | 
						
							| 8 |  | nfcv | ⊢ Ⅎ 𝑥 𝐶 | 
						
							| 9 | 7 8 | nfmpt | ⊢ Ⅎ 𝑥 ( 𝑘  ∈  ∪  𝑥  ∈  𝐴 𝐵  ↦  𝐶 ) | 
						
							| 10 | 6 9 | nffv | ⊢ Ⅎ 𝑥 ( Σ^ ‘ ( 𝑘  ∈  ∪  𝑥  ∈  𝐴 𝐵  ↦  𝐶 ) ) | 
						
							| 11 |  | nfmpt1 | ⊢ Ⅎ 𝑥 ( 𝑥  ∈  𝐴  ↦  ( Σ^ ‘ ( 𝑘  ∈  𝐵  ↦  𝐶 ) ) ) | 
						
							| 12 | 6 11 | nffv | ⊢ Ⅎ 𝑥 ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  ( Σ^ ‘ ( 𝑘  ∈  𝐵  ↦  𝐶 ) ) ) ) | 
						
							| 13 | 10 12 | nfeq | ⊢ Ⅎ 𝑥 ( Σ^ ‘ ( 𝑘  ∈  ∪  𝑥  ∈  𝐴 𝐵  ↦  𝐶 ) )  =  ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  ( Σ^ ‘ ( 𝑘  ∈  𝐵  ↦  𝐶 ) ) ) ) | 
						
							| 14 | 2 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝐴 𝐵  ∈  𝑊 ) | 
						
							| 15 |  | iunexg | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ∀ 𝑥  ∈  𝐴 𝐵  ∈  𝑊 )  →  ∪  𝑥  ∈  𝐴 𝐵  ∈  V ) | 
						
							| 16 | 1 14 15 | syl2anc | ⊢ ( 𝜑  →  ∪  𝑥  ∈  𝐴 𝐵  ∈  V ) | 
						
							| 17 |  | eliun | ⊢ ( 𝑘  ∈  ∪  𝑥  ∈  𝐴 𝐵  ↔  ∃ 𝑥  ∈  𝐴 𝑘  ∈  𝐵 ) | 
						
							| 18 | 17 | biimpi | ⊢ ( 𝑘  ∈  ∪  𝑥  ∈  𝐴 𝐵  →  ∃ 𝑥  ∈  𝐴 𝑘  ∈  𝐵 ) | 
						
							| 19 | 18 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ∪  𝑥  ∈  𝐴 𝐵 )  →  ∃ 𝑥  ∈  𝐴 𝑘  ∈  𝐵 ) | 
						
							| 20 |  | nfcv | ⊢ Ⅎ 𝑥 𝑘 | 
						
							| 21 | 20 7 | nfel | ⊢ Ⅎ 𝑥 𝑘  ∈  ∪  𝑥  ∈  𝐴 𝐵 | 
						
							| 22 | 5 21 | nfan | ⊢ Ⅎ 𝑥 ( 𝜑  ∧  𝑘  ∈  ∪  𝑥  ∈  𝐴 𝐵 ) | 
						
							| 23 | 8 | nfel1 | ⊢ Ⅎ 𝑥 𝐶  ∈  ( 0 [,] +∞ ) | 
						
							| 24 | 4 | 3exp | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  →  ( 𝑘  ∈  𝐵  →  𝐶  ∈  ( 0 [,] +∞ ) ) ) ) | 
						
							| 25 | 24 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ∪  𝑥  ∈  𝐴 𝐵 )  →  ( 𝑥  ∈  𝐴  →  ( 𝑘  ∈  𝐵  →  𝐶  ∈  ( 0 [,] +∞ ) ) ) ) | 
						
							| 26 | 22 23 25 | rexlimd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ∪  𝑥  ∈  𝐴 𝐵 )  →  ( ∃ 𝑥  ∈  𝐴 𝑘  ∈  𝐵  →  𝐶  ∈  ( 0 [,] +∞ ) ) ) | 
						
							| 27 | 19 26 | mpd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ∪  𝑥  ∈  𝐴 𝐵 )  →  𝐶  ∈  ( 0 [,] +∞ ) ) | 
						
							| 28 |  | eqid | ⊢ ( 𝑘  ∈  ∪  𝑥  ∈  𝐴 𝐵  ↦  𝐶 )  =  ( 𝑘  ∈  ∪  𝑥  ∈  𝐴 𝐵  ↦  𝐶 ) | 
						
							| 29 | 27 28 | fmptd | ⊢ ( 𝜑  →  ( 𝑘  ∈  ∪  𝑥  ∈  𝐴 𝐵  ↦  𝐶 ) : ∪  𝑥  ∈  𝐴 𝐵 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 30 | 16 29 | sge0xrcl | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑘  ∈  ∪  𝑥  ∈  𝐴 𝐵  ↦  𝐶 ) )  ∈  ℝ* ) | 
						
							| 31 | 30 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴  ∧  ( Σ^ ‘ ( 𝑘  ∈  𝐵  ↦  𝐶 ) )  =  +∞ )  →  ( Σ^ ‘ ( 𝑘  ∈  ∪  𝑥  ∈  𝐴 𝐵  ↦  𝐶 ) )  ∈  ℝ* ) | 
						
							| 32 |  | id | ⊢ ( ( Σ^ ‘ ( 𝑘  ∈  𝐵  ↦  𝐶 ) )  =  +∞  →  ( Σ^ ‘ ( 𝑘  ∈  𝐵  ↦  𝐶 ) )  =  +∞ ) | 
						
							| 33 | 32 | eqcomd | ⊢ ( ( Σ^ ‘ ( 𝑘  ∈  𝐵  ↦  𝐶 ) )  =  +∞  →  +∞  =  ( Σ^ ‘ ( 𝑘  ∈  𝐵  ↦  𝐶 ) ) ) | 
						
							| 34 | 33 | adantl | ⊢ ( ( 𝑥  ∈  𝐴  ∧  ( Σ^ ‘ ( 𝑘  ∈  𝐵  ↦  𝐶 ) )  =  +∞ )  →  +∞  =  ( Σ^ ‘ ( 𝑘  ∈  𝐵  ↦  𝐶 ) ) ) | 
						
							| 35 | 34 | 3adant1 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴  ∧  ( Σ^ ‘ ( 𝑘  ∈  𝐵  ↦  𝐶 ) )  =  +∞ )  →  +∞  =  ( Σ^ ‘ ( 𝑘  ∈  𝐵  ↦  𝐶 ) ) ) | 
						
							| 36 | 16 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ∪  𝑥  ∈  𝐴 𝐵  ∈  V ) | 
						
							| 37 | 27 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  ∧  𝑘  ∈  ∪  𝑥  ∈  𝐴 𝐵 )  →  𝐶  ∈  ( 0 [,] +∞ ) ) | 
						
							| 38 |  | ssiun2 | ⊢ ( 𝑥  ∈  𝐴  →  𝐵  ⊆  ∪  𝑥  ∈  𝐴 𝐵 ) | 
						
							| 39 | 38 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ⊆  ∪  𝑥  ∈  𝐴 𝐵 ) | 
						
							| 40 | 36 37 39 | sge0lessmpt | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( Σ^ ‘ ( 𝑘  ∈  𝐵  ↦  𝐶 ) )  ≤  ( Σ^ ‘ ( 𝑘  ∈  ∪  𝑥  ∈  𝐴 𝐵  ↦  𝐶 ) ) ) | 
						
							| 41 | 40 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴  ∧  ( Σ^ ‘ ( 𝑘  ∈  𝐵  ↦  𝐶 ) )  =  +∞ )  →  ( Σ^ ‘ ( 𝑘  ∈  𝐵  ↦  𝐶 ) )  ≤  ( Σ^ ‘ ( 𝑘  ∈  ∪  𝑥  ∈  𝐴 𝐵  ↦  𝐶 ) ) ) | 
						
							| 42 | 35 41 | eqbrtrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴  ∧  ( Σ^ ‘ ( 𝑘  ∈  𝐵  ↦  𝐶 ) )  =  +∞ )  →  +∞  ≤  ( Σ^ ‘ ( 𝑘  ∈  ∪  𝑥  ∈  𝐴 𝐵  ↦  𝐶 ) ) ) | 
						
							| 43 | 31 42 | xrgepnfd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴  ∧  ( Σ^ ‘ ( 𝑘  ∈  𝐵  ↦  𝐶 ) )  =  +∞ )  →  ( Σ^ ‘ ( 𝑘  ∈  ∪  𝑥  ∈  𝐴 𝐵  ↦  𝐶 ) )  =  +∞ ) | 
						
							| 44 | 1 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴  ∧  ( Σ^ ‘ ( 𝑘  ∈  𝐵  ↦  𝐶 ) )  =  +∞ )  →  𝐴  ∈  𝑉 ) | 
						
							| 45 |  | nfv | ⊢ Ⅎ 𝑥 ( 𝜑  ∧  𝑦  ∈  𝐴 ) | 
						
							| 46 |  | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑦  /  𝑥 ⦌ 𝐵 | 
						
							| 47 |  | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑦  /  𝑥 ⦌ 𝑊 | 
						
							| 48 | 46 47 | nfel | ⊢ Ⅎ 𝑥 ⦋ 𝑦  /  𝑥 ⦌ 𝐵  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝑊 | 
						
							| 49 | 45 48 | nfim | ⊢ Ⅎ 𝑥 ( ( 𝜑  ∧  𝑦  ∈  𝐴 )  →  ⦋ 𝑦  /  𝑥 ⦌ 𝐵  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝑊 ) | 
						
							| 50 |  | eleq1w | ⊢ ( 𝑥  =  𝑦  →  ( 𝑥  ∈  𝐴  ↔  𝑦  ∈  𝐴 ) ) | 
						
							| 51 | 50 | anbi2d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  ↔  ( 𝜑  ∧  𝑦  ∈  𝐴 ) ) ) | 
						
							| 52 |  | csbeq1a | ⊢ ( 𝑥  =  𝑦  →  𝐵  =  ⦋ 𝑦  /  𝑥 ⦌ 𝐵 ) | 
						
							| 53 |  | csbeq1a | ⊢ ( 𝑥  =  𝑦  →  𝑊  =  ⦋ 𝑦  /  𝑥 ⦌ 𝑊 ) | 
						
							| 54 | 52 53 | eleq12d | ⊢ ( 𝑥  =  𝑦  →  ( 𝐵  ∈  𝑊  ↔  ⦋ 𝑦  /  𝑥 ⦌ 𝐵  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝑊 ) ) | 
						
							| 55 | 51 54 | imbi12d | ⊢ ( 𝑥  =  𝑦  →  ( ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  𝑊 )  ↔  ( ( 𝜑  ∧  𝑦  ∈  𝐴 )  →  ⦋ 𝑦  /  𝑥 ⦌ 𝐵  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝑊 ) ) ) | 
						
							| 56 | 49 55 2 | chvarfv | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐴 )  →  ⦋ 𝑦  /  𝑥 ⦌ 𝐵  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝑊 ) | 
						
							| 57 | 56 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  ∧  𝑦  ∈  𝐴 )  →  ⦋ 𝑦  /  𝑥 ⦌ 𝐵  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝑊 ) | 
						
							| 58 | 46 8 | nfmpt | ⊢ Ⅎ 𝑥 ( 𝑘  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐵  ↦  𝐶 ) | 
						
							| 59 |  | nfcv | ⊢ Ⅎ 𝑥 ( 0 [,] +∞ ) | 
						
							| 60 | 58 46 59 | nff | ⊢ Ⅎ 𝑥 ( 𝑘  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐵  ↦  𝐶 ) : ⦋ 𝑦  /  𝑥 ⦌ 𝐵 ⟶ ( 0 [,] +∞ ) | 
						
							| 61 | 45 60 | nfim | ⊢ Ⅎ 𝑥 ( ( 𝜑  ∧  𝑦  ∈  𝐴 )  →  ( 𝑘  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐵  ↦  𝐶 ) : ⦋ 𝑦  /  𝑥 ⦌ 𝐵 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 62 | 52 | mpteq1d | ⊢ ( 𝑥  =  𝑦  →  ( 𝑘  ∈  𝐵  ↦  𝐶 )  =  ( 𝑘  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐵  ↦  𝐶 ) ) | 
						
							| 63 | 62 52 | feq12d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝑘  ∈  𝐵  ↦  𝐶 ) : 𝐵 ⟶ ( 0 [,] +∞ )  ↔  ( 𝑘  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐵  ↦  𝐶 ) : ⦋ 𝑦  /  𝑥 ⦌ 𝐵 ⟶ ( 0 [,] +∞ ) ) ) | 
						
							| 64 | 51 63 | imbi12d | ⊢ ( 𝑥  =  𝑦  →  ( ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( 𝑘  ∈  𝐵  ↦  𝐶 ) : 𝐵 ⟶ ( 0 [,] +∞ ) )  ↔  ( ( 𝜑  ∧  𝑦  ∈  𝐴 )  →  ( 𝑘  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐵  ↦  𝐶 ) : ⦋ 𝑦  /  𝑥 ⦌ 𝐵 ⟶ ( 0 [,] +∞ ) ) ) ) | 
						
							| 65 | 24 | imp31 | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  ∧  𝑘  ∈  𝐵 )  →  𝐶  ∈  ( 0 [,] +∞ ) ) | 
						
							| 66 |  | eqid | ⊢ ( 𝑘  ∈  𝐵  ↦  𝐶 )  =  ( 𝑘  ∈  𝐵  ↦  𝐶 ) | 
						
							| 67 | 65 66 | fmptd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( 𝑘  ∈  𝐵  ↦  𝐶 ) : 𝐵 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 68 | 61 64 67 | chvarfv | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐴 )  →  ( 𝑘  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐵  ↦  𝐶 ) : ⦋ 𝑦  /  𝑥 ⦌ 𝐵 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 69 | 68 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  ∧  𝑦  ∈  𝐴 )  →  ( 𝑘  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐵  ↦  𝐶 ) : ⦋ 𝑦  /  𝑥 ⦌ 𝐵 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 70 | 57 69 | sge0cl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  ∧  𝑦  ∈  𝐴 )  →  ( Σ^ ‘ ( 𝑘  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐵  ↦  𝐶 ) )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 71 |  | nfcv | ⊢ Ⅎ 𝑦 ( Σ^ ‘ ( 𝑘  ∈  𝐵  ↦  𝐶 ) ) | 
						
							| 72 | 6 58 | nffv | ⊢ Ⅎ 𝑥 ( Σ^ ‘ ( 𝑘  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐵  ↦  𝐶 ) ) | 
						
							| 73 | 62 | fveq2d | ⊢ ( 𝑥  =  𝑦  →  ( Σ^ ‘ ( 𝑘  ∈  𝐵  ↦  𝐶 ) )  =  ( Σ^ ‘ ( 𝑘  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐵  ↦  𝐶 ) ) ) | 
						
							| 74 | 71 72 73 | cbvmpt | ⊢ ( 𝑥  ∈  𝐴  ↦  ( Σ^ ‘ ( 𝑘  ∈  𝐵  ↦  𝐶 ) ) )  =  ( 𝑦  ∈  𝐴  ↦  ( Σ^ ‘ ( 𝑘  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐵  ↦  𝐶 ) ) ) | 
						
							| 75 | 70 74 | fmptd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( 𝑥  ∈  𝐴  ↦  ( Σ^ ‘ ( 𝑘  ∈  𝐵  ↦  𝐶 ) ) ) : 𝐴 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 76 | 75 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴  ∧  ( Σ^ ‘ ( 𝑘  ∈  𝐵  ↦  𝐶 ) )  =  +∞ )  →  ( 𝑥  ∈  𝐴  ↦  ( Σ^ ‘ ( 𝑘  ∈  𝐵  ↦  𝐶 ) ) ) : 𝐴 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 77 |  | id | ⊢ ( 𝑥  ∈  𝐴  →  𝑥  ∈  𝐴 ) | 
						
							| 78 |  | fvexd | ⊢ ( 𝑥  ∈  𝐴  →  ( Σ^ ‘ ( 𝑘  ∈  𝐵  ↦  𝐶 ) )  ∈  V ) | 
						
							| 79 |  | eqid | ⊢ ( 𝑥  ∈  𝐴  ↦  ( Σ^ ‘ ( 𝑘  ∈  𝐵  ↦  𝐶 ) ) )  =  ( 𝑥  ∈  𝐴  ↦  ( Σ^ ‘ ( 𝑘  ∈  𝐵  ↦  𝐶 ) ) ) | 
						
							| 80 | 79 | elrnmpt1 | ⊢ ( ( 𝑥  ∈  𝐴  ∧  ( Σ^ ‘ ( 𝑘  ∈  𝐵  ↦  𝐶 ) )  ∈  V )  →  ( Σ^ ‘ ( 𝑘  ∈  𝐵  ↦  𝐶 ) )  ∈  ran  ( 𝑥  ∈  𝐴  ↦  ( Σ^ ‘ ( 𝑘  ∈  𝐵  ↦  𝐶 ) ) ) ) | 
						
							| 81 | 77 78 80 | syl2anc | ⊢ ( 𝑥  ∈  𝐴  →  ( Σ^ ‘ ( 𝑘  ∈  𝐵  ↦  𝐶 ) )  ∈  ran  ( 𝑥  ∈  𝐴  ↦  ( Σ^ ‘ ( 𝑘  ∈  𝐵  ↦  𝐶 ) ) ) ) | 
						
							| 82 | 81 | adantr | ⊢ ( ( 𝑥  ∈  𝐴  ∧  ( Σ^ ‘ ( 𝑘  ∈  𝐵  ↦  𝐶 ) )  =  +∞ )  →  ( Σ^ ‘ ( 𝑘  ∈  𝐵  ↦  𝐶 ) )  ∈  ran  ( 𝑥  ∈  𝐴  ↦  ( Σ^ ‘ ( 𝑘  ∈  𝐵  ↦  𝐶 ) ) ) ) | 
						
							| 83 | 34 82 | eqeltrd | ⊢ ( ( 𝑥  ∈  𝐴  ∧  ( Σ^ ‘ ( 𝑘  ∈  𝐵  ↦  𝐶 ) )  =  +∞ )  →  +∞  ∈  ran  ( 𝑥  ∈  𝐴  ↦  ( Σ^ ‘ ( 𝑘  ∈  𝐵  ↦  𝐶 ) ) ) ) | 
						
							| 84 | 83 | 3adant1 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴  ∧  ( Σ^ ‘ ( 𝑘  ∈  𝐵  ↦  𝐶 ) )  =  +∞ )  →  +∞  ∈  ran  ( 𝑥  ∈  𝐴  ↦  ( Σ^ ‘ ( 𝑘  ∈  𝐵  ↦  𝐶 ) ) ) ) | 
						
							| 85 | 44 76 84 | sge0pnfval | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴  ∧  ( Σ^ ‘ ( 𝑘  ∈  𝐵  ↦  𝐶 ) )  =  +∞ )  →  ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  ( Σ^ ‘ ( 𝑘  ∈  𝐵  ↦  𝐶 ) ) ) )  =  +∞ ) | 
						
							| 86 | 43 85 | eqtr4d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴  ∧  ( Σ^ ‘ ( 𝑘  ∈  𝐵  ↦  𝐶 ) )  =  +∞ )  →  ( Σ^ ‘ ( 𝑘  ∈  ∪  𝑥  ∈  𝐴 𝐵  ↦  𝐶 ) )  =  ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  ( Σ^ ‘ ( 𝑘  ∈  𝐵  ↦  𝐶 ) ) ) ) ) | 
						
							| 87 | 86 | 3exp | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  →  ( ( Σ^ ‘ ( 𝑘  ∈  𝐵  ↦  𝐶 ) )  =  +∞  →  ( Σ^ ‘ ( 𝑘  ∈  ∪  𝑥  ∈  𝐴 𝐵  ↦  𝐶 ) )  =  ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  ( Σ^ ‘ ( 𝑘  ∈  𝐵  ↦  𝐶 ) ) ) ) ) ) ) | 
						
							| 88 | 5 13 87 | rexlimd | ⊢ ( 𝜑  →  ( ∃ 𝑥  ∈  𝐴 ( Σ^ ‘ ( 𝑘  ∈  𝐵  ↦  𝐶 ) )  =  +∞  →  ( Σ^ ‘ ( 𝑘  ∈  ∪  𝑥  ∈  𝐴 𝐵  ↦  𝐶 ) )  =  ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  ( Σ^ ‘ ( 𝑘  ∈  𝐵  ↦  𝐶 ) ) ) ) ) ) | 
						
							| 89 | 88 | imp | ⊢ ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝐴 ( Σ^ ‘ ( 𝑘  ∈  𝐵  ↦  𝐶 ) )  =  +∞ )  →  ( Σ^ ‘ ( 𝑘  ∈  ∪  𝑥  ∈  𝐴 𝐵  ↦  𝐶 ) )  =  ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  ( Σ^ ‘ ( 𝑘  ∈  𝐵  ↦  𝐶 ) ) ) ) ) | 
						
							| 90 |  | simpl | ⊢ ( ( 𝜑  ∧  ¬  ∃ 𝑥  ∈  𝐴 ( Σ^ ‘ ( 𝑘  ∈  𝐵  ↦  𝐶 ) )  =  +∞ )  →  𝜑 ) | 
						
							| 91 |  | ralnex | ⊢ ( ∀ 𝑥  ∈  𝐴 ¬  ( Σ^ ‘ ( 𝑘  ∈  𝐵  ↦  𝐶 ) )  =  +∞  ↔  ¬  ∃ 𝑥  ∈  𝐴 ( Σ^ ‘ ( 𝑘  ∈  𝐵  ↦  𝐶 ) )  =  +∞ ) | 
						
							| 92 |  | df-ne | ⊢ ( ( Σ^ ‘ ( 𝑘  ∈  𝐵  ↦  𝐶 ) )  ≠  +∞  ↔  ¬  ( Σ^ ‘ ( 𝑘  ∈  𝐵  ↦  𝐶 ) )  =  +∞ ) | 
						
							| 93 | 92 | bicomi | ⊢ ( ¬  ( Σ^ ‘ ( 𝑘  ∈  𝐵  ↦  𝐶 ) )  =  +∞  ↔  ( Σ^ ‘ ( 𝑘  ∈  𝐵  ↦  𝐶 ) )  ≠  +∞ ) | 
						
							| 94 | 93 | ralbii | ⊢ ( ∀ 𝑥  ∈  𝐴 ¬  ( Σ^ ‘ ( 𝑘  ∈  𝐵  ↦  𝐶 ) )  =  +∞  ↔  ∀ 𝑥  ∈  𝐴 ( Σ^ ‘ ( 𝑘  ∈  𝐵  ↦  𝐶 ) )  ≠  +∞ ) | 
						
							| 95 | 91 94 | sylbb1 | ⊢ ( ¬  ∃ 𝑥  ∈  𝐴 ( Σ^ ‘ ( 𝑘  ∈  𝐵  ↦  𝐶 ) )  =  +∞  →  ∀ 𝑥  ∈  𝐴 ( Σ^ ‘ ( 𝑘  ∈  𝐵  ↦  𝐶 ) )  ≠  +∞ ) | 
						
							| 96 | 95 | adantl | ⊢ ( ( 𝜑  ∧  ¬  ∃ 𝑥  ∈  𝐴 ( Σ^ ‘ ( 𝑘  ∈  𝐵  ↦  𝐶 ) )  =  +∞ )  →  ∀ 𝑥  ∈  𝐴 ( Σ^ ‘ ( 𝑘  ∈  𝐵  ↦  𝐶 ) )  ≠  +∞ ) | 
						
							| 97 | 1 | adantr | ⊢ ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝐴 ( Σ^ ‘ ( 𝑘  ∈  𝐵  ↦  𝐶 ) )  ≠  +∞ )  →  𝐴  ∈  𝑉 ) | 
						
							| 98 |  | nfcv | ⊢ Ⅎ 𝑥 𝑊 | 
						
							| 99 | 46 98 | nfel | ⊢ Ⅎ 𝑥 ⦋ 𝑦  /  𝑥 ⦌ 𝐵  ∈  𝑊 | 
						
							| 100 | 45 99 | nfim | ⊢ Ⅎ 𝑥 ( ( 𝜑  ∧  𝑦  ∈  𝐴 )  →  ⦋ 𝑦  /  𝑥 ⦌ 𝐵  ∈  𝑊 ) | 
						
							| 101 | 52 | eleq1d | ⊢ ( 𝑥  =  𝑦  →  ( 𝐵  ∈  𝑊  ↔  ⦋ 𝑦  /  𝑥 ⦌ 𝐵  ∈  𝑊 ) ) | 
						
							| 102 | 51 101 | imbi12d | ⊢ ( 𝑥  =  𝑦  →  ( ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  𝑊 )  ↔  ( ( 𝜑  ∧  𝑦  ∈  𝐴 )  →  ⦋ 𝑦  /  𝑥 ⦌ 𝐵  ∈  𝑊 ) ) ) | 
						
							| 103 | 100 102 2 | chvarfv | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐴 )  →  ⦋ 𝑦  /  𝑥 ⦌ 𝐵  ∈  𝑊 ) | 
						
							| 104 | 103 | adantlr | ⊢ ( ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝐴 ( Σ^ ‘ ( 𝑘  ∈  𝐵  ↦  𝐶 ) )  ≠  +∞ )  ∧  𝑦  ∈  𝐴 )  →  ⦋ 𝑦  /  𝑥 ⦌ 𝐵  ∈  𝑊 ) | 
						
							| 105 |  | nfcv | ⊢ Ⅎ 𝑦 𝐵 | 
						
							| 106 | 105 46 52 | cbvdisj | ⊢ ( Disj  𝑥  ∈  𝐴 𝐵  ↔  Disj  𝑦  ∈  𝐴 ⦋ 𝑦  /  𝑥 ⦌ 𝐵 ) | 
						
							| 107 | 3 106 | sylib | ⊢ ( 𝜑  →  Disj  𝑦  ∈  𝐴 ⦋ 𝑦  /  𝑥 ⦌ 𝐵 ) | 
						
							| 108 | 107 | adantr | ⊢ ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝐴 ( Σ^ ‘ ( 𝑘  ∈  𝐵  ↦  𝐶 ) )  ≠  +∞ )  →  Disj  𝑦  ∈  𝐴 ⦋ 𝑦  /  𝑥 ⦌ 𝐵 ) | 
						
							| 109 |  | nfv | ⊢ Ⅎ 𝑘 ( 𝜑  ∧  𝑦  ∈  𝐴  ∧  𝑗  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐵 ) | 
						
							| 110 |  | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ 𝑗  /  𝑘 ⦌ 𝐶 | 
						
							| 111 | 110 | nfel1 | ⊢ Ⅎ 𝑘 ⦋ 𝑗  /  𝑘 ⦌ 𝐶  ∈  ( 0 [,] +∞ ) | 
						
							| 112 | 109 111 | nfim | ⊢ Ⅎ 𝑘 ( ( 𝜑  ∧  𝑦  ∈  𝐴  ∧  𝑗  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐵 )  →  ⦋ 𝑗  /  𝑘 ⦌ 𝐶  ∈  ( 0 [,] +∞ ) ) | 
						
							| 113 |  | eleq1w | ⊢ ( 𝑘  =  𝑗  →  ( 𝑘  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐵  ↔  𝑗  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐵 ) ) | 
						
							| 114 | 113 | 3anbi3d | ⊢ ( 𝑘  =  𝑗  →  ( ( 𝜑  ∧  𝑦  ∈  𝐴  ∧  𝑘  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐵 )  ↔  ( 𝜑  ∧  𝑦  ∈  𝐴  ∧  𝑗  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐵 ) ) ) | 
						
							| 115 |  | csbeq1a | ⊢ ( 𝑘  =  𝑗  →  𝐶  =  ⦋ 𝑗  /  𝑘 ⦌ 𝐶 ) | 
						
							| 116 | 115 | eleq1d | ⊢ ( 𝑘  =  𝑗  →  ( 𝐶  ∈  ( 0 [,] +∞ )  ↔  ⦋ 𝑗  /  𝑘 ⦌ 𝐶  ∈  ( 0 [,] +∞ ) ) ) | 
						
							| 117 | 114 116 | imbi12d | ⊢ ( 𝑘  =  𝑗  →  ( ( ( 𝜑  ∧  𝑦  ∈  𝐴  ∧  𝑘  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐵 )  →  𝐶  ∈  ( 0 [,] +∞ ) )  ↔  ( ( 𝜑  ∧  𝑦  ∈  𝐴  ∧  𝑗  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐵 )  →  ⦋ 𝑗  /  𝑘 ⦌ 𝐶  ∈  ( 0 [,] +∞ ) ) ) ) | 
						
							| 118 |  | nfv | ⊢ Ⅎ 𝑥 𝑦  ∈  𝐴 | 
						
							| 119 | 20 46 | nfel | ⊢ Ⅎ 𝑥 𝑘  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐵 | 
						
							| 120 | 5 118 119 | nf3an | ⊢ Ⅎ 𝑥 ( 𝜑  ∧  𝑦  ∈  𝐴  ∧  𝑘  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐵 ) | 
						
							| 121 | 120 23 | nfim | ⊢ Ⅎ 𝑥 ( ( 𝜑  ∧  𝑦  ∈  𝐴  ∧  𝑘  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐵 )  →  𝐶  ∈  ( 0 [,] +∞ ) ) | 
						
							| 122 | 52 | eleq2d | ⊢ ( 𝑥  =  𝑦  →  ( 𝑘  ∈  𝐵  ↔  𝑘  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐵 ) ) | 
						
							| 123 | 50 122 | 3anbi23d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝜑  ∧  𝑥  ∈  𝐴  ∧  𝑘  ∈  𝐵 )  ↔  ( 𝜑  ∧  𝑦  ∈  𝐴  ∧  𝑘  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐵 ) ) ) | 
						
							| 124 | 123 | imbi1d | ⊢ ( 𝑥  =  𝑦  →  ( ( ( 𝜑  ∧  𝑥  ∈  𝐴  ∧  𝑘  ∈  𝐵 )  →  𝐶  ∈  ( 0 [,] +∞ ) )  ↔  ( ( 𝜑  ∧  𝑦  ∈  𝐴  ∧  𝑘  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐵 )  →  𝐶  ∈  ( 0 [,] +∞ ) ) ) ) | 
						
							| 125 | 121 124 4 | chvarfv | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐴  ∧  𝑘  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐵 )  →  𝐶  ∈  ( 0 [,] +∞ ) ) | 
						
							| 126 | 112 117 125 | chvarfv | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐴  ∧  𝑗  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐵 )  →  ⦋ 𝑗  /  𝑘 ⦌ 𝐶  ∈  ( 0 [,] +∞ ) ) | 
						
							| 127 | 126 | 3adant1r | ⊢ ( ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝐴 ( Σ^ ‘ ( 𝑘  ∈  𝐵  ↦  𝐶 ) )  ≠  +∞ )  ∧  𝑦  ∈  𝐴  ∧  𝑗  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐵 )  →  ⦋ 𝑗  /  𝑘 ⦌ 𝐶  ∈  ( 0 [,] +∞ ) ) | 
						
							| 128 |  | simpr | ⊢ ( ( ∀ 𝑥  ∈  𝐴 ( Σ^ ‘ ( 𝑘  ∈  𝐵  ↦  𝐶 ) )  ≠  +∞  ∧  𝑦  ∈  𝐴 )  →  𝑦  ∈  𝐴 ) | 
						
							| 129 |  | simpl | ⊢ ( ( ∀ 𝑥  ∈  𝐴 ( Σ^ ‘ ( 𝑘  ∈  𝐵  ↦  𝐶 ) )  ≠  +∞  ∧  𝑦  ∈  𝐴 )  →  ∀ 𝑥  ∈  𝐴 ( Σ^ ‘ ( 𝑘  ∈  𝐵  ↦  𝐶 ) )  ≠  +∞ ) | 
						
							| 130 |  | simpl | ⊢ ( ( 𝑦  ∈  𝐴  ∧  ∀ 𝑥  ∈  𝐴 ( Σ^ ‘ ( 𝑘  ∈  𝐵  ↦  𝐶 ) )  ≠  +∞ )  →  𝑦  ∈  𝐴 ) | 
						
							| 131 |  | simpr | ⊢ ( ( 𝑦  ∈  𝐴  ∧  ∀ 𝑥  ∈  𝐴 ( Σ^ ‘ ( 𝑘  ∈  𝐵  ↦  𝐶 ) )  ≠  +∞ )  →  ∀ 𝑥  ∈  𝐴 ( Σ^ ‘ ( 𝑘  ∈  𝐵  ↦  𝐶 ) )  ≠  +∞ ) | 
						
							| 132 |  | nfcv | ⊢ Ⅎ 𝑥 ⦋ 𝑗  /  𝑘 ⦌ 𝐶 | 
						
							| 133 | 46 132 | nfmpt | ⊢ Ⅎ 𝑥 ( 𝑗  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐵  ↦  ⦋ 𝑗  /  𝑘 ⦌ 𝐶 ) | 
						
							| 134 | 6 133 | nffv | ⊢ Ⅎ 𝑥 ( Σ^ ‘ ( 𝑗  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐵  ↦  ⦋ 𝑗  /  𝑘 ⦌ 𝐶 ) ) | 
						
							| 135 |  | nfcv | ⊢ Ⅎ 𝑥 +∞ | 
						
							| 136 | 134 135 | nfne | ⊢ Ⅎ 𝑥 ( Σ^ ‘ ( 𝑗  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐵  ↦  ⦋ 𝑗  /  𝑘 ⦌ 𝐶 ) )  ≠  +∞ | 
						
							| 137 |  | nfcv | ⊢ Ⅎ 𝑗 𝐶 | 
						
							| 138 | 137 110 115 | cbvmpt | ⊢ ( 𝑘  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐵  ↦  𝐶 )  =  ( 𝑗  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐵  ↦  ⦋ 𝑗  /  𝑘 ⦌ 𝐶 ) | 
						
							| 139 | 138 | a1i | ⊢ ( 𝑥  =  𝑦  →  ( 𝑘  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐵  ↦  𝐶 )  =  ( 𝑗  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐵  ↦  ⦋ 𝑗  /  𝑘 ⦌ 𝐶 ) ) | 
						
							| 140 | 62 139 | eqtrd | ⊢ ( 𝑥  =  𝑦  →  ( 𝑘  ∈  𝐵  ↦  𝐶 )  =  ( 𝑗  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐵  ↦  ⦋ 𝑗  /  𝑘 ⦌ 𝐶 ) ) | 
						
							| 141 | 140 | fveq2d | ⊢ ( 𝑥  =  𝑦  →  ( Σ^ ‘ ( 𝑘  ∈  𝐵  ↦  𝐶 ) )  =  ( Σ^ ‘ ( 𝑗  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐵  ↦  ⦋ 𝑗  /  𝑘 ⦌ 𝐶 ) ) ) | 
						
							| 142 | 141 | neeq1d | ⊢ ( 𝑥  =  𝑦  →  ( ( Σ^ ‘ ( 𝑘  ∈  𝐵  ↦  𝐶 ) )  ≠  +∞  ↔  ( Σ^ ‘ ( 𝑗  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐵  ↦  ⦋ 𝑗  /  𝑘 ⦌ 𝐶 ) )  ≠  +∞ ) ) | 
						
							| 143 | 136 142 | rspc | ⊢ ( 𝑦  ∈  𝐴  →  ( ∀ 𝑥  ∈  𝐴 ( Σ^ ‘ ( 𝑘  ∈  𝐵  ↦  𝐶 ) )  ≠  +∞  →  ( Σ^ ‘ ( 𝑗  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐵  ↦  ⦋ 𝑗  /  𝑘 ⦌ 𝐶 ) )  ≠  +∞ ) ) | 
						
							| 144 | 130 131 143 | sylc | ⊢ ( ( 𝑦  ∈  𝐴  ∧  ∀ 𝑥  ∈  𝐴 ( Σ^ ‘ ( 𝑘  ∈  𝐵  ↦  𝐶 ) )  ≠  +∞ )  →  ( Σ^ ‘ ( 𝑗  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐵  ↦  ⦋ 𝑗  /  𝑘 ⦌ 𝐶 ) )  ≠  +∞ ) | 
						
							| 145 | 128 129 144 | syl2anc | ⊢ ( ( ∀ 𝑥  ∈  𝐴 ( Σ^ ‘ ( 𝑘  ∈  𝐵  ↦  𝐶 ) )  ≠  +∞  ∧  𝑦  ∈  𝐴 )  →  ( Σ^ ‘ ( 𝑗  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐵  ↦  ⦋ 𝑗  /  𝑘 ⦌ 𝐶 ) )  ≠  +∞ ) | 
						
							| 146 | 145 | neneqd | ⊢ ( ( ∀ 𝑥  ∈  𝐴 ( Σ^ ‘ ( 𝑘  ∈  𝐵  ↦  𝐶 ) )  ≠  +∞  ∧  𝑦  ∈  𝐴 )  →  ¬  ( Σ^ ‘ ( 𝑗  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐵  ↦  ⦋ 𝑗  /  𝑘 ⦌ 𝐶 ) )  =  +∞ ) | 
						
							| 147 | 146 | adantll | ⊢ ( ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝐴 ( Σ^ ‘ ( 𝑘  ∈  𝐵  ↦  𝐶 ) )  ≠  +∞ )  ∧  𝑦  ∈  𝐴 )  →  ¬  ( Σ^ ‘ ( 𝑗  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐵  ↦  ⦋ 𝑗  /  𝑘 ⦌ 𝐶 ) )  =  +∞ ) | 
						
							| 148 | 126 | 3expa | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝐴 )  ∧  𝑗  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐵 )  →  ⦋ 𝑗  /  𝑘 ⦌ 𝐶  ∈  ( 0 [,] +∞ ) ) | 
						
							| 149 |  | eqid | ⊢ ( 𝑗  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐵  ↦  ⦋ 𝑗  /  𝑘 ⦌ 𝐶 )  =  ( 𝑗  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐵  ↦  ⦋ 𝑗  /  𝑘 ⦌ 𝐶 ) | 
						
							| 150 | 148 149 | fmptd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐴 )  →  ( 𝑗  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐵  ↦  ⦋ 𝑗  /  𝑘 ⦌ 𝐶 ) : ⦋ 𝑦  /  𝑥 ⦌ 𝐵 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 151 | 150 | adantlr | ⊢ ( ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝐴 ( Σ^ ‘ ( 𝑘  ∈  𝐵  ↦  𝐶 ) )  ≠  +∞ )  ∧  𝑦  ∈  𝐴 )  →  ( 𝑗  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐵  ↦  ⦋ 𝑗  /  𝑘 ⦌ 𝐶 ) : ⦋ 𝑦  /  𝑥 ⦌ 𝐵 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 152 | 104 151 | sge0repnf | ⊢ ( ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝐴 ( Σ^ ‘ ( 𝑘  ∈  𝐵  ↦  𝐶 ) )  ≠  +∞ )  ∧  𝑦  ∈  𝐴 )  →  ( ( Σ^ ‘ ( 𝑗  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐵  ↦  ⦋ 𝑗  /  𝑘 ⦌ 𝐶 ) )  ∈  ℝ  ↔  ¬  ( Σ^ ‘ ( 𝑗  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐵  ↦  ⦋ 𝑗  /  𝑘 ⦌ 𝐶 ) )  =  +∞ ) ) | 
						
							| 153 | 147 152 | mpbird | ⊢ ( ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝐴 ( Σ^ ‘ ( 𝑘  ∈  𝐵  ↦  𝐶 ) )  ≠  +∞ )  ∧  𝑦  ∈  𝐴 )  →  ( Σ^ ‘ ( 𝑗  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐵  ↦  ⦋ 𝑗  /  𝑘 ⦌ 𝐶 ) )  ∈  ℝ ) | 
						
							| 154 | 137 110 115 | cbvmpt | ⊢ ( 𝑘  ∈  ∪  𝑥  ∈  𝐴 𝐵  ↦  𝐶 )  =  ( 𝑗  ∈  ∪  𝑥  ∈  𝐴 𝐵  ↦  ⦋ 𝑗  /  𝑘 ⦌ 𝐶 ) | 
						
							| 155 | 105 46 52 | cbviun | ⊢ ∪  𝑥  ∈  𝐴 𝐵  =  ∪  𝑦  ∈  𝐴 ⦋ 𝑦  /  𝑥 ⦌ 𝐵 | 
						
							| 156 | 155 | mpteq1i | ⊢ ( 𝑗  ∈  ∪  𝑥  ∈  𝐴 𝐵  ↦  ⦋ 𝑗  /  𝑘 ⦌ 𝐶 )  =  ( 𝑗  ∈  ∪  𝑦  ∈  𝐴 ⦋ 𝑦  /  𝑥 ⦌ 𝐵  ↦  ⦋ 𝑗  /  𝑘 ⦌ 𝐶 ) | 
						
							| 157 | 154 156 | eqtri | ⊢ ( 𝑘  ∈  ∪  𝑥  ∈  𝐴 𝐵  ↦  𝐶 )  =  ( 𝑗  ∈  ∪  𝑦  ∈  𝐴 ⦋ 𝑦  /  𝑥 ⦌ 𝐵  ↦  ⦋ 𝑗  /  𝑘 ⦌ 𝐶 ) | 
						
							| 158 | 157 | fveq2i | ⊢ ( Σ^ ‘ ( 𝑘  ∈  ∪  𝑥  ∈  𝐴 𝐵  ↦  𝐶 ) )  =  ( Σ^ ‘ ( 𝑗  ∈  ∪  𝑦  ∈  𝐴 ⦋ 𝑦  /  𝑥 ⦌ 𝐵  ↦  ⦋ 𝑗  /  𝑘 ⦌ 𝐶 ) ) | 
						
							| 159 | 158 30 | eqeltrrid | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑗  ∈  ∪  𝑦  ∈  𝐴 ⦋ 𝑦  /  𝑥 ⦌ 𝐵  ↦  ⦋ 𝑗  /  𝑘 ⦌ 𝐶 ) )  ∈  ℝ* ) | 
						
							| 160 | 159 | adantr | ⊢ ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝐴 ( Σ^ ‘ ( 𝑘  ∈  𝐵  ↦  𝐶 ) )  ≠  +∞ )  →  ( Σ^ ‘ ( 𝑗  ∈  ∪  𝑦  ∈  𝐴 ⦋ 𝑦  /  𝑥 ⦌ 𝐵  ↦  ⦋ 𝑗  /  𝑘 ⦌ 𝐶 ) )  ∈  ℝ* ) | 
						
							| 161 | 71 134 141 | cbvmpt | ⊢ ( 𝑥  ∈  𝐴  ↦  ( Σ^ ‘ ( 𝑘  ∈  𝐵  ↦  𝐶 ) ) )  =  ( 𝑦  ∈  𝐴  ↦  ( Σ^ ‘ ( 𝑗  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐵  ↦  ⦋ 𝑗  /  𝑘 ⦌ 𝐶 ) ) ) | 
						
							| 162 | 161 | fveq2i | ⊢ ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  ( Σ^ ‘ ( 𝑘  ∈  𝐵  ↦  𝐶 ) ) ) )  =  ( Σ^ ‘ ( 𝑦  ∈  𝐴  ↦  ( Σ^ ‘ ( 𝑗  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐵  ↦  ⦋ 𝑗  /  𝑘 ⦌ 𝐶 ) ) ) ) | 
						
							| 163 | 2 67 | sge0cl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( Σ^ ‘ ( 𝑘  ∈  𝐵  ↦  𝐶 ) )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 164 | 163 79 | fmptd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  ( Σ^ ‘ ( 𝑘  ∈  𝐵  ↦  𝐶 ) ) ) : 𝐴 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 165 | 1 164 | sge0xrcl | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  ( Σ^ ‘ ( 𝑘  ∈  𝐵  ↦  𝐶 ) ) ) )  ∈  ℝ* ) | 
						
							| 166 | 162 165 | eqeltrrid | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑦  ∈  𝐴  ↦  ( Σ^ ‘ ( 𝑗  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐵  ↦  ⦋ 𝑗  /  𝑘 ⦌ 𝐶 ) ) ) )  ∈  ℝ* ) | 
						
							| 167 | 166 | adantr | ⊢ ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝐴 ( Σ^ ‘ ( 𝑘  ∈  𝐵  ↦  𝐶 ) )  ≠  +∞ )  →  ( Σ^ ‘ ( 𝑦  ∈  𝐴  ↦  ( Σ^ ‘ ( 𝑗  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐵  ↦  ⦋ 𝑗  /  𝑘 ⦌ 𝐶 ) ) ) )  ∈  ℝ* ) | 
						
							| 168 |  | eliun | ⊢ ( 𝑗  ∈  ∪  𝑦  ∈  𝐴 ⦋ 𝑦  /  𝑥 ⦌ 𝐵  ↔  ∃ 𝑦  ∈  𝐴 𝑗  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐵 ) | 
						
							| 169 | 168 | biimpi | ⊢ ( 𝑗  ∈  ∪  𝑦  ∈  𝐴 ⦋ 𝑦  /  𝑥 ⦌ 𝐵  →  ∃ 𝑦  ∈  𝐴 𝑗  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐵 ) | 
						
							| 170 | 169 | adantl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ∪  𝑦  ∈  𝐴 ⦋ 𝑦  /  𝑥 ⦌ 𝐵 )  →  ∃ 𝑦  ∈  𝐴 𝑗  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐵 ) | 
						
							| 171 |  | nfv | ⊢ Ⅎ 𝑦 𝜑 | 
						
							| 172 |  | nfcv | ⊢ Ⅎ 𝑦 𝑗 | 
						
							| 173 |  | nfiu1 | ⊢ Ⅎ 𝑦 ∪  𝑦  ∈  𝐴 ⦋ 𝑦  /  𝑥 ⦌ 𝐵 | 
						
							| 174 | 172 173 | nfel | ⊢ Ⅎ 𝑦 𝑗  ∈  ∪  𝑦  ∈  𝐴 ⦋ 𝑦  /  𝑥 ⦌ 𝐵 | 
						
							| 175 | 171 174 | nfan | ⊢ Ⅎ 𝑦 ( 𝜑  ∧  𝑗  ∈  ∪  𝑦  ∈  𝐴 ⦋ 𝑦  /  𝑥 ⦌ 𝐵 ) | 
						
							| 176 |  | nfv | ⊢ Ⅎ 𝑦 ⦋ 𝑗  /  𝑘 ⦌ 𝐶  ∈  ( 0 [,] +∞ ) | 
						
							| 177 | 148 | exp31 | ⊢ ( 𝜑  →  ( 𝑦  ∈  𝐴  →  ( 𝑗  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐵  →  ⦋ 𝑗  /  𝑘 ⦌ 𝐶  ∈  ( 0 [,] +∞ ) ) ) ) | 
						
							| 178 | 177 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ∪  𝑦  ∈  𝐴 ⦋ 𝑦  /  𝑥 ⦌ 𝐵 )  →  ( 𝑦  ∈  𝐴  →  ( 𝑗  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐵  →  ⦋ 𝑗  /  𝑘 ⦌ 𝐶  ∈  ( 0 [,] +∞ ) ) ) ) | 
						
							| 179 | 175 176 178 | rexlimd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ∪  𝑦  ∈  𝐴 ⦋ 𝑦  /  𝑥 ⦌ 𝐵 )  →  ( ∃ 𝑦  ∈  𝐴 𝑗  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐵  →  ⦋ 𝑗  /  𝑘 ⦌ 𝐶  ∈  ( 0 [,] +∞ ) ) ) | 
						
							| 180 | 170 179 | mpd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ∪  𝑦  ∈  𝐴 ⦋ 𝑦  /  𝑥 ⦌ 𝐵 )  →  ⦋ 𝑗  /  𝑘 ⦌ 𝐶  ∈  ( 0 [,] +∞ ) ) | 
						
							| 181 |  | eqid | ⊢ ( 𝑗  ∈  ∪  𝑦  ∈  𝐴 ⦋ 𝑦  /  𝑥 ⦌ 𝐵  ↦  ⦋ 𝑗  /  𝑘 ⦌ 𝐶 )  =  ( 𝑗  ∈  ∪  𝑦  ∈  𝐴 ⦋ 𝑦  /  𝑥 ⦌ 𝐵  ↦  ⦋ 𝑗  /  𝑘 ⦌ 𝐶 ) | 
						
							| 182 | 180 181 | fmptd | ⊢ ( 𝜑  →  ( 𝑗  ∈  ∪  𝑦  ∈  𝐴 ⦋ 𝑦  /  𝑥 ⦌ 𝐵  ↦  ⦋ 𝑗  /  𝑘 ⦌ 𝐶 ) : ∪  𝑦  ∈  𝐴 ⦋ 𝑦  /  𝑥 ⦌ 𝐵 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 183 | 182 | adantr | ⊢ ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝐴 ( Σ^ ‘ ( 𝑘  ∈  𝐵  ↦  𝐶 ) )  ≠  +∞ )  →  ( 𝑗  ∈  ∪  𝑦  ∈  𝐴 ⦋ 𝑦  /  𝑥 ⦌ 𝐵  ↦  ⦋ 𝑗  /  𝑘 ⦌ 𝐶 ) : ∪  𝑦  ∈  𝐴 ⦋ 𝑦  /  𝑥 ⦌ 𝐵 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 184 | 155 16 | eqeltrrid | ⊢ ( 𝜑  →  ∪  𝑦  ∈  𝐴 ⦋ 𝑦  /  𝑥 ⦌ 𝐵  ∈  V ) | 
						
							| 185 | 184 | adantr | ⊢ ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝐴 ( Σ^ ‘ ( 𝑘  ∈  𝐵  ↦  𝐶 ) )  ≠  +∞ )  →  ∪  𝑦  ∈  𝐴 ⦋ 𝑦  /  𝑥 ⦌ 𝐵  ∈  V ) | 
						
							| 186 | 97 104 108 127 153 160 167 183 185 | sge0iunmptlemre | ⊢ ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝐴 ( Σ^ ‘ ( 𝑘  ∈  𝐵  ↦  𝐶 ) )  ≠  +∞ )  →  ( Σ^ ‘ ( 𝑗  ∈  ∪  𝑦  ∈  𝐴 ⦋ 𝑦  /  𝑥 ⦌ 𝐵  ↦  ⦋ 𝑗  /  𝑘 ⦌ 𝐶 ) )  =  ( Σ^ ‘ ( 𝑦  ∈  𝐴  ↦  ( Σ^ ‘ ( 𝑗  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐵  ↦  ⦋ 𝑗  /  𝑘 ⦌ 𝐶 ) ) ) ) ) | 
						
							| 187 | 158 | a1i | ⊢ ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝐴 ( Σ^ ‘ ( 𝑘  ∈  𝐵  ↦  𝐶 ) )  ≠  +∞ )  →  ( Σ^ ‘ ( 𝑘  ∈  ∪  𝑥  ∈  𝐴 𝐵  ↦  𝐶 ) )  =  ( Σ^ ‘ ( 𝑗  ∈  ∪  𝑦  ∈  𝐴 ⦋ 𝑦  /  𝑥 ⦌ 𝐵  ↦  ⦋ 𝑗  /  𝑘 ⦌ 𝐶 ) ) ) | 
						
							| 188 | 162 | a1i | ⊢ ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝐴 ( Σ^ ‘ ( 𝑘  ∈  𝐵  ↦  𝐶 ) )  ≠  +∞ )  →  ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  ( Σ^ ‘ ( 𝑘  ∈  𝐵  ↦  𝐶 ) ) ) )  =  ( Σ^ ‘ ( 𝑦  ∈  𝐴  ↦  ( Σ^ ‘ ( 𝑗  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐵  ↦  ⦋ 𝑗  /  𝑘 ⦌ 𝐶 ) ) ) ) ) | 
						
							| 189 | 186 187 188 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝐴 ( Σ^ ‘ ( 𝑘  ∈  𝐵  ↦  𝐶 ) )  ≠  +∞ )  →  ( Σ^ ‘ ( 𝑘  ∈  ∪  𝑥  ∈  𝐴 𝐵  ↦  𝐶 ) )  =  ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  ( Σ^ ‘ ( 𝑘  ∈  𝐵  ↦  𝐶 ) ) ) ) ) | 
						
							| 190 | 90 96 189 | syl2anc | ⊢ ( ( 𝜑  ∧  ¬  ∃ 𝑥  ∈  𝐴 ( Σ^ ‘ ( 𝑘  ∈  𝐵  ↦  𝐶 ) )  =  +∞ )  →  ( Σ^ ‘ ( 𝑘  ∈  ∪  𝑥  ∈  𝐴 𝐵  ↦  𝐶 ) )  =  ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  ( Σ^ ‘ ( 𝑘  ∈  𝐵  ↦  𝐶 ) ) ) ) ) | 
						
							| 191 | 89 190 | pm2.61dan | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑘  ∈  ∪  𝑥  ∈  𝐴 𝐵  ↦  𝐶 ) )  =  ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  ( Σ^ ‘ ( 𝑘  ∈  𝐵  ↦  𝐶 ) ) ) ) ) |