Metamath Proof Explorer


Theorem sge0iun

Description: Sum of nonnegative extended reals over a disjoint indexed union. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses sge0iun.a ( 𝜑𝐴𝑉 )
sge0iun.b ( ( 𝜑𝑥𝐴 ) → 𝐵𝑊 )
sge0iun.x 𝑋 = 𝑥𝐴 𝐵
sge0iun.f ( 𝜑𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) )
sge0iun.dj ( 𝜑Disj 𝑥𝐴 𝐵 )
Assertion sge0iun ( 𝜑 → ( Σ^𝐹 ) = ( Σ^ ‘ ( 𝑥𝐴 ↦ ( Σ^ ‘ ( 𝐹𝐵 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 sge0iun.a ( 𝜑𝐴𝑉 )
2 sge0iun.b ( ( 𝜑𝑥𝐴 ) → 𝐵𝑊 )
3 sge0iun.x 𝑋 = 𝑥𝐴 𝐵
4 sge0iun.f ( 𝜑𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) )
5 sge0iun.dj ( 𝜑Disj 𝑥𝐴 𝐵 )
6 4 adantr ( ( 𝜑𝑥𝐴 ) → 𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) )
7 6 3adant3 ( ( 𝜑𝑥𝐴𝑦𝐵 ) → 𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) )
8 ssiun2 ( 𝑥𝐴𝐵 𝑥𝐴 𝐵 )
9 8 adantl ( ( 𝜑𝑥𝐴 ) → 𝐵 𝑥𝐴 𝐵 )
10 3 eqcomi 𝑥𝐴 𝐵 = 𝑋
11 9 10 sseqtrdi ( ( 𝜑𝑥𝐴 ) → 𝐵𝑋 )
12 11 3adant3 ( ( 𝜑𝑥𝐴𝑦𝐵 ) → 𝐵𝑋 )
13 simp3 ( ( 𝜑𝑥𝐴𝑦𝐵 ) → 𝑦𝐵 )
14 12 13 sseldd ( ( 𝜑𝑥𝐴𝑦𝐵 ) → 𝑦𝑋 )
15 7 14 ffvelrnd ( ( 𝜑𝑥𝐴𝑦𝐵 ) → ( 𝐹𝑦 ) ∈ ( 0 [,] +∞ ) )
16 1 2 5 15 sge0iunmpt ( 𝜑 → ( Σ^ ‘ ( 𝑦 𝑥𝐴 𝐵 ↦ ( 𝐹𝑦 ) ) ) = ( Σ^ ‘ ( 𝑥𝐴 ↦ ( Σ^ ‘ ( 𝑦𝐵 ↦ ( 𝐹𝑦 ) ) ) ) ) )
17 3 feq2i ( 𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) ↔ 𝐹 : 𝑥𝐴 𝐵 ⟶ ( 0 [,] +∞ ) )
18 17 a1i ( 𝜑 → ( 𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) ↔ 𝐹 : 𝑥𝐴 𝐵 ⟶ ( 0 [,] +∞ ) ) )
19 4 18 mpbid ( 𝜑𝐹 : 𝑥𝐴 𝐵 ⟶ ( 0 [,] +∞ ) )
20 19 feqmptd ( 𝜑𝐹 = ( 𝑦 𝑥𝐴 𝐵 ↦ ( 𝐹𝑦 ) ) )
21 20 fveq2d ( 𝜑 → ( Σ^𝐹 ) = ( Σ^ ‘ ( 𝑦 𝑥𝐴 𝐵 ↦ ( 𝐹𝑦 ) ) ) )
22 6 11 fssresd ( ( 𝜑𝑥𝐴 ) → ( 𝐹𝐵 ) : 𝐵 ⟶ ( 0 [,] +∞ ) )
23 22 feqmptd ( ( 𝜑𝑥𝐴 ) → ( 𝐹𝐵 ) = ( 𝑦𝐵 ↦ ( ( 𝐹𝐵 ) ‘ 𝑦 ) ) )
24 fvres ( 𝑦𝐵 → ( ( 𝐹𝐵 ) ‘ 𝑦 ) = ( 𝐹𝑦 ) )
25 24 mpteq2ia ( 𝑦𝐵 ↦ ( ( 𝐹𝐵 ) ‘ 𝑦 ) ) = ( 𝑦𝐵 ↦ ( 𝐹𝑦 ) )
26 25 a1i ( ( 𝜑𝑥𝐴 ) → ( 𝑦𝐵 ↦ ( ( 𝐹𝐵 ) ‘ 𝑦 ) ) = ( 𝑦𝐵 ↦ ( 𝐹𝑦 ) ) )
27 23 26 eqtrd ( ( 𝜑𝑥𝐴 ) → ( 𝐹𝐵 ) = ( 𝑦𝐵 ↦ ( 𝐹𝑦 ) ) )
28 27 fveq2d ( ( 𝜑𝑥𝐴 ) → ( Σ^ ‘ ( 𝐹𝐵 ) ) = ( Σ^ ‘ ( 𝑦𝐵 ↦ ( 𝐹𝑦 ) ) ) )
29 28 mpteq2dva ( 𝜑 → ( 𝑥𝐴 ↦ ( Σ^ ‘ ( 𝐹𝐵 ) ) ) = ( 𝑥𝐴 ↦ ( Σ^ ‘ ( 𝑦𝐵 ↦ ( 𝐹𝑦 ) ) ) ) )
30 29 fveq2d ( 𝜑 → ( Σ^ ‘ ( 𝑥𝐴 ↦ ( Σ^ ‘ ( 𝐹𝐵 ) ) ) ) = ( Σ^ ‘ ( 𝑥𝐴 ↦ ( Σ^ ‘ ( 𝑦𝐵 ↦ ( 𝐹𝑦 ) ) ) ) ) )
31 16 21 30 3eqtr4d ( 𝜑 → ( Σ^𝐹 ) = ( Σ^ ‘ ( 𝑥𝐴 ↦ ( Σ^ ‘ ( 𝐹𝐵 ) ) ) ) )