Step |
Hyp |
Ref |
Expression |
1 |
|
sge0iun.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
2 |
|
sge0iun.b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑊 ) |
3 |
|
sge0iun.x |
⊢ 𝑋 = ∪ 𝑥 ∈ 𝐴 𝐵 |
4 |
|
sge0iun.f |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) ) |
5 |
|
sge0iun.dj |
⊢ ( 𝜑 → Disj 𝑥 ∈ 𝐴 𝐵 ) |
6 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) ) |
7 |
6
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → 𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) ) |
8 |
|
ssiun2 |
⊢ ( 𝑥 ∈ 𝐴 → 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
9 |
8
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
10 |
3
|
eqcomi |
⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = 𝑋 |
11 |
9 10
|
sseqtrdi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ⊆ 𝑋 ) |
12 |
11
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → 𝐵 ⊆ 𝑋 ) |
13 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ 𝐵 ) |
14 |
12 13
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ 𝑋 ) |
15 |
7 14
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑦 ) ∈ ( 0 [,] +∞ ) ) |
16 |
1 2 5 15
|
sge0iunmpt |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↦ ( 𝐹 ‘ 𝑦 ) ) ) = ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ ( Σ^ ‘ ( 𝑦 ∈ 𝐵 ↦ ( 𝐹 ‘ 𝑦 ) ) ) ) ) ) |
17 |
3
|
feq2i |
⊢ ( 𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) ↔ 𝐹 : ∪ 𝑥 ∈ 𝐴 𝐵 ⟶ ( 0 [,] +∞ ) ) |
18 |
17
|
a1i |
⊢ ( 𝜑 → ( 𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) ↔ 𝐹 : ∪ 𝑥 ∈ 𝐴 𝐵 ⟶ ( 0 [,] +∞ ) ) ) |
19 |
4 18
|
mpbid |
⊢ ( 𝜑 → 𝐹 : ∪ 𝑥 ∈ 𝐴 𝐵 ⟶ ( 0 [,] +∞ ) ) |
20 |
19
|
feqmptd |
⊢ ( 𝜑 → 𝐹 = ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↦ ( 𝐹 ‘ 𝑦 ) ) ) |
21 |
20
|
fveq2d |
⊢ ( 𝜑 → ( Σ^ ‘ 𝐹 ) = ( Σ^ ‘ ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↦ ( 𝐹 ‘ 𝑦 ) ) ) ) |
22 |
6 11
|
fssresd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ↾ 𝐵 ) : 𝐵 ⟶ ( 0 [,] +∞ ) ) |
23 |
22
|
feqmptd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ↾ 𝐵 ) = ( 𝑦 ∈ 𝐵 ↦ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑦 ) ) ) |
24 |
|
fvres |
⊢ ( 𝑦 ∈ 𝐵 → ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) |
25 |
24
|
mpteq2ia |
⊢ ( 𝑦 ∈ 𝐵 ↦ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑦 ) ) = ( 𝑦 ∈ 𝐵 ↦ ( 𝐹 ‘ 𝑦 ) ) |
26 |
25
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 ∈ 𝐵 ↦ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑦 ) ) = ( 𝑦 ∈ 𝐵 ↦ ( 𝐹 ‘ 𝑦 ) ) ) |
27 |
23 26
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ↾ 𝐵 ) = ( 𝑦 ∈ 𝐵 ↦ ( 𝐹 ‘ 𝑦 ) ) ) |
28 |
27
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( Σ^ ‘ ( 𝐹 ↾ 𝐵 ) ) = ( Σ^ ‘ ( 𝑦 ∈ 𝐵 ↦ ( 𝐹 ‘ 𝑦 ) ) ) ) |
29 |
28
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( Σ^ ‘ ( 𝐹 ↾ 𝐵 ) ) ) = ( 𝑥 ∈ 𝐴 ↦ ( Σ^ ‘ ( 𝑦 ∈ 𝐵 ↦ ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
30 |
29
|
fveq2d |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ ( Σ^ ‘ ( 𝐹 ↾ 𝐵 ) ) ) ) = ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ ( Σ^ ‘ ( 𝑦 ∈ 𝐵 ↦ ( 𝐹 ‘ 𝑦 ) ) ) ) ) ) |
31 |
16 21 30
|
3eqtr4d |
⊢ ( 𝜑 → ( Σ^ ‘ 𝐹 ) = ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ ( Σ^ ‘ ( 𝐹 ↾ 𝐵 ) ) ) ) ) |