| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sge0iun.a |
|- ( ph -> A e. V ) |
| 2 |
|
sge0iun.b |
|- ( ( ph /\ x e. A ) -> B e. W ) |
| 3 |
|
sge0iun.x |
|- X = U_ x e. A B |
| 4 |
|
sge0iun.f |
|- ( ph -> F : X --> ( 0 [,] +oo ) ) |
| 5 |
|
sge0iun.dj |
|- ( ph -> Disj_ x e. A B ) |
| 6 |
4
|
adantr |
|- ( ( ph /\ x e. A ) -> F : X --> ( 0 [,] +oo ) ) |
| 7 |
6
|
3adant3 |
|- ( ( ph /\ x e. A /\ y e. B ) -> F : X --> ( 0 [,] +oo ) ) |
| 8 |
|
ssiun2 |
|- ( x e. A -> B C_ U_ x e. A B ) |
| 9 |
8
|
adantl |
|- ( ( ph /\ x e. A ) -> B C_ U_ x e. A B ) |
| 10 |
3
|
eqcomi |
|- U_ x e. A B = X |
| 11 |
9 10
|
sseqtrdi |
|- ( ( ph /\ x e. A ) -> B C_ X ) |
| 12 |
11
|
3adant3 |
|- ( ( ph /\ x e. A /\ y e. B ) -> B C_ X ) |
| 13 |
|
simp3 |
|- ( ( ph /\ x e. A /\ y e. B ) -> y e. B ) |
| 14 |
12 13
|
sseldd |
|- ( ( ph /\ x e. A /\ y e. B ) -> y e. X ) |
| 15 |
7 14
|
ffvelcdmd |
|- ( ( ph /\ x e. A /\ y e. B ) -> ( F ` y ) e. ( 0 [,] +oo ) ) |
| 16 |
1 2 5 15
|
sge0iunmpt |
|- ( ph -> ( sum^ ` ( y e. U_ x e. A B |-> ( F ` y ) ) ) = ( sum^ ` ( x e. A |-> ( sum^ ` ( y e. B |-> ( F ` y ) ) ) ) ) ) |
| 17 |
3
|
feq2i |
|- ( F : X --> ( 0 [,] +oo ) <-> F : U_ x e. A B --> ( 0 [,] +oo ) ) |
| 18 |
17
|
a1i |
|- ( ph -> ( F : X --> ( 0 [,] +oo ) <-> F : U_ x e. A B --> ( 0 [,] +oo ) ) ) |
| 19 |
4 18
|
mpbid |
|- ( ph -> F : U_ x e. A B --> ( 0 [,] +oo ) ) |
| 20 |
19
|
feqmptd |
|- ( ph -> F = ( y e. U_ x e. A B |-> ( F ` y ) ) ) |
| 21 |
20
|
fveq2d |
|- ( ph -> ( sum^ ` F ) = ( sum^ ` ( y e. U_ x e. A B |-> ( F ` y ) ) ) ) |
| 22 |
6 11
|
fssresd |
|- ( ( ph /\ x e. A ) -> ( F |` B ) : B --> ( 0 [,] +oo ) ) |
| 23 |
22
|
feqmptd |
|- ( ( ph /\ x e. A ) -> ( F |` B ) = ( y e. B |-> ( ( F |` B ) ` y ) ) ) |
| 24 |
|
fvres |
|- ( y e. B -> ( ( F |` B ) ` y ) = ( F ` y ) ) |
| 25 |
24
|
mpteq2ia |
|- ( y e. B |-> ( ( F |` B ) ` y ) ) = ( y e. B |-> ( F ` y ) ) |
| 26 |
25
|
a1i |
|- ( ( ph /\ x e. A ) -> ( y e. B |-> ( ( F |` B ) ` y ) ) = ( y e. B |-> ( F ` y ) ) ) |
| 27 |
23 26
|
eqtrd |
|- ( ( ph /\ x e. A ) -> ( F |` B ) = ( y e. B |-> ( F ` y ) ) ) |
| 28 |
27
|
fveq2d |
|- ( ( ph /\ x e. A ) -> ( sum^ ` ( F |` B ) ) = ( sum^ ` ( y e. B |-> ( F ` y ) ) ) ) |
| 29 |
28
|
mpteq2dva |
|- ( ph -> ( x e. A |-> ( sum^ ` ( F |` B ) ) ) = ( x e. A |-> ( sum^ ` ( y e. B |-> ( F ` y ) ) ) ) ) |
| 30 |
29
|
fveq2d |
|- ( ph -> ( sum^ ` ( x e. A |-> ( sum^ ` ( F |` B ) ) ) ) = ( sum^ ` ( x e. A |-> ( sum^ ` ( y e. B |-> ( F ` y ) ) ) ) ) ) |
| 31 |
16 21 30
|
3eqtr4d |
|- ( ph -> ( sum^ ` F ) = ( sum^ ` ( x e. A |-> ( sum^ ` ( F |` B ) ) ) ) ) |