Metamath Proof Explorer


Theorem sge0iun

Description: Sum of nonnegative extended reals over a disjoint indexed union. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses sge0iun.a φAV
sge0iun.b φxABW
sge0iun.x X=xAB
sge0iun.f φF:X0+∞
sge0iun.dj φDisjxAB
Assertion sge0iun φsum^F=sum^xAsum^FB

Proof

Step Hyp Ref Expression
1 sge0iun.a φAV
2 sge0iun.b φxABW
3 sge0iun.x X=xAB
4 sge0iun.f φF:X0+∞
5 sge0iun.dj φDisjxAB
6 4 adantr φxAF:X0+∞
7 6 3adant3 φxAyBF:X0+∞
8 ssiun2 xABxAB
9 8 adantl φxABxAB
10 3 eqcomi xAB=X
11 9 10 sseqtrdi φxABX
12 11 3adant3 φxAyBBX
13 simp3 φxAyByB
14 12 13 sseldd φxAyByX
15 7 14 ffvelcdmd φxAyBFy0+∞
16 1 2 5 15 sge0iunmpt φsum^yxABFy=sum^xAsum^yBFy
17 3 feq2i F:X0+∞F:xAB0+∞
18 17 a1i φF:X0+∞F:xAB0+∞
19 4 18 mpbid φF:xAB0+∞
20 19 feqmptd φF=yxABFy
21 20 fveq2d φsum^F=sum^yxABFy
22 6 11 fssresd φxAFB:B0+∞
23 22 feqmptd φxAFB=yBFBy
24 fvres yBFBy=Fy
25 24 mpteq2ia yBFBy=yBFy
26 25 a1i φxAyBFBy=yBFy
27 23 26 eqtrd φxAFB=yBFy
28 27 fveq2d φxAsum^FB=sum^yBFy
29 28 mpteq2dva φxAsum^FB=xAsum^yBFy
30 29 fveq2d φsum^xAsum^FB=sum^xAsum^yBFy
31 16 21 30 3eqtr4d φsum^F=sum^xAsum^FB