Metamath Proof Explorer


Theorem sge0lessmpt

Description: A shorter sum of nonnegative extended reals is smaller than a longer one. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses sge0lessmpt.a φ A V
sge0lessmpt.b φ x A B 0 +∞
sge0lessmpt.c φ C A
Assertion sge0lessmpt φ sum^ x C B sum^ x A B

Proof

Step Hyp Ref Expression
1 sge0lessmpt.a φ A V
2 sge0lessmpt.b φ x A B 0 +∞
3 sge0lessmpt.c φ C A
4 id φ φ
5 3 resmptd φ x A B C = x C B
6 5 eqcomd φ x C B = x A B C
7 4 6 syl φ x C B = x A B C
8 7 fveq2d φ sum^ x C B = sum^ x A B C
9 eqid x A B = x A B
10 2 9 fmptd φ x A B : A 0 +∞
11 1 10 sge0less φ sum^ x A B C sum^ x A B
12 8 11 eqbrtrd φ sum^ x C B sum^ x A B