| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sge0lessmpt.a |
|- ( ph -> A e. V ) |
| 2 |
|
sge0lessmpt.b |
|- ( ( ph /\ x e. A ) -> B e. ( 0 [,] +oo ) ) |
| 3 |
|
sge0lessmpt.c |
|- ( ph -> C C_ A ) |
| 4 |
|
id |
|- ( ph -> ph ) |
| 5 |
3
|
resmptd |
|- ( ph -> ( ( x e. A |-> B ) |` C ) = ( x e. C |-> B ) ) |
| 6 |
5
|
eqcomd |
|- ( ph -> ( x e. C |-> B ) = ( ( x e. A |-> B ) |` C ) ) |
| 7 |
4 6
|
syl |
|- ( ph -> ( x e. C |-> B ) = ( ( x e. A |-> B ) |` C ) ) |
| 8 |
7
|
fveq2d |
|- ( ph -> ( sum^ ` ( x e. C |-> B ) ) = ( sum^ ` ( ( x e. A |-> B ) |` C ) ) ) |
| 9 |
|
eqid |
|- ( x e. A |-> B ) = ( x e. A |-> B ) |
| 10 |
2 9
|
fmptd |
|- ( ph -> ( x e. A |-> B ) : A --> ( 0 [,] +oo ) ) |
| 11 |
1 10
|
sge0less |
|- ( ph -> ( sum^ ` ( ( x e. A |-> B ) |` C ) ) <_ ( sum^ ` ( x e. A |-> B ) ) ) |
| 12 |
8 11
|
eqbrtrd |
|- ( ph -> ( sum^ ` ( x e. C |-> B ) ) <_ ( sum^ ` ( x e. A |-> B ) ) ) |