| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sge0ltfirp.x |
|
| 2 |
|
sge0ltfirp.f |
|
| 3 |
|
sge0ltfirp.y |
|
| 4 |
|
sge0ltfirp.re |
|
| 5 |
1 2 4
|
sge0rern |
|
| 6 |
2 5
|
fge0iccico |
|
| 7 |
6
|
sge0rnre |
|
| 8 |
|
sge0rnn0 |
|
| 9 |
8
|
a1i |
|
| 10 |
1 2 4
|
sge0rnbnd |
|
| 11 |
7 9 10 3
|
suprltrp |
|
| 12 |
|
nfv |
|
| 13 |
|
nfv |
|
| 14 |
|
simp1 |
|
| 15 |
|
vex |
|
| 16 |
|
eqid |
|
| 17 |
16
|
elrnmpt |
|
| 18 |
15 17
|
ax-mp |
|
| 19 |
18
|
biimpi |
|
| 20 |
19
|
adantr |
|
| 21 |
|
nfmpt1 |
|
| 22 |
21
|
nfrn |
|
| 23 |
|
nfcv |
|
| 24 |
|
nfcv |
|
| 25 |
22 23 24
|
nfsup |
|
| 26 |
|
nfcv |
|
| 27 |
|
nfcv |
|
| 28 |
25 26 27
|
nfov |
|
| 29 |
|
nfcv |
|
| 30 |
28 24 29
|
nfbr |
|
| 31 |
|
simpl |
|
| 32 |
|
simpr |
|
| 33 |
31 32
|
breqtrd |
|
| 34 |
33
|
ex |
|
| 35 |
34
|
a1d |
|
| 36 |
30 35
|
reximdai |
|
| 37 |
36
|
adantl |
|
| 38 |
20 37
|
mpd |
|
| 39 |
38
|
3adant1 |
|
| 40 |
|
simpl |
|
| 41 |
1 2 4
|
sge0supre |
|
| 42 |
41
|
oveq1d |
|
| 43 |
42
|
adantr |
|
| 44 |
|
simpr |
|
| 45 |
43 44
|
eqbrtrd |
|
| 46 |
45
|
adantlr |
|
| 47 |
|
simpr |
|
| 48 |
4
|
adantr |
|
| 49 |
3
|
rpred |
|
| 50 |
49
|
adantr |
|
| 51 |
|
elinel2 |
|
| 52 |
51
|
adantl |
|
| 53 |
|
rge0ssre |
|
| 54 |
6
|
adantr |
|
| 55 |
54
|
adantr |
|
| 56 |
|
elpwinss |
|
| 57 |
56
|
adantl |
|
| 58 |
57
|
sselda |
|
| 59 |
55 58
|
ffvelcdmd |
|
| 60 |
53 59
|
sselid |
|
| 61 |
52 60
|
fsumrecl |
|
| 62 |
48 50 61
|
ltsubaddd |
|
| 63 |
62
|
adantr |
|
| 64 |
47 63
|
mpbid |
|
| 65 |
54 57
|
fssresd |
|
| 66 |
52 65
|
sge0fsum |
|
| 67 |
|
fvres |
|
| 68 |
67
|
sumeq2i |
|
| 69 |
68
|
a1i |
|
| 70 |
66 69
|
eqtr2d |
|
| 71 |
70
|
oveq1d |
|
| 72 |
71
|
adantr |
|
| 73 |
64 72
|
breqtrd |
|
| 74 |
40 46 73
|
syl2anc |
|
| 75 |
74
|
ex |
|
| 76 |
75
|
reximdva |
|
| 77 |
76
|
imp |
|
| 78 |
14 39 77
|
syl2anc |
|
| 79 |
78
|
3exp |
|
| 80 |
12 13 79
|
rexlimd |
|
| 81 |
11 80
|
mpd |
|