| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sge0ltfirp.x | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 2 |  | sge0ltfirp.f | ⊢ ( 𝜑  →  𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 3 |  | sge0ltfirp.y | ⊢ ( 𝜑  →  𝑌  ∈  ℝ+ ) | 
						
							| 4 |  | sge0ltfirp.re | ⊢ ( 𝜑  →  ( Σ^ ‘ 𝐹 )  ∈  ℝ ) | 
						
							| 5 | 1 2 4 | sge0rern | ⊢ ( 𝜑  →  ¬  +∞  ∈  ran  𝐹 ) | 
						
							| 6 | 2 5 | fge0iccico | ⊢ ( 𝜑  →  𝐹 : 𝑋 ⟶ ( 0 [,) +∞ ) ) | 
						
							| 7 | 6 | sge0rnre | ⊢ ( 𝜑  →  ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) )  ⊆  ℝ ) | 
						
							| 8 |  | sge0rnn0 | ⊢ ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) )  ≠  ∅ | 
						
							| 9 | 8 | a1i | ⊢ ( 𝜑  →  ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) )  ≠  ∅ ) | 
						
							| 10 | 1 2 4 | sge0rnbnd | ⊢ ( 𝜑  →  ∃ 𝑧  ∈  ℝ ∀ 𝑤  ∈  ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) ) 𝑤  ≤  𝑧 ) | 
						
							| 11 | 7 9 10 3 | suprltrp | ⊢ ( 𝜑  →  ∃ 𝑤  ∈  ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) ) ( sup ( ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) ) ,  ℝ ,   <  )  −  𝑌 )  <  𝑤 ) | 
						
							| 12 |  | nfv | ⊢ Ⅎ 𝑤 𝜑 | 
						
							| 13 |  | nfv | ⊢ Ⅎ 𝑤 ∃ 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) ( Σ^ ‘ 𝐹 )  <  ( ( Σ^ ‘ ( 𝐹  ↾  𝑥 ) )  +  𝑌 ) | 
						
							| 14 |  | simp1 | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) )  ∧  ( sup ( ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) ) ,  ℝ ,   <  )  −  𝑌 )  <  𝑤 )  →  𝜑 ) | 
						
							| 15 |  | vex | ⊢ 𝑤  ∈  V | 
						
							| 16 |  | eqid | ⊢ ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) )  =  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 17 | 16 | elrnmpt | ⊢ ( 𝑤  ∈  V  →  ( 𝑤  ∈  ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) )  ↔  ∃ 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) 𝑤  =  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 18 | 15 17 | ax-mp | ⊢ ( 𝑤  ∈  ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) )  ↔  ∃ 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) 𝑤  =  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 19 | 18 | biimpi | ⊢ ( 𝑤  ∈  ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) )  →  ∃ 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) 𝑤  =  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 20 | 19 | adantr | ⊢ ( ( 𝑤  ∈  ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) )  ∧  ( sup ( ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) ) ,  ℝ ,   <  )  −  𝑌 )  <  𝑤 )  →  ∃ 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) 𝑤  =  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 21 |  | nfmpt1 | ⊢ Ⅎ 𝑥 ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 22 | 21 | nfrn | ⊢ Ⅎ 𝑥 ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 23 |  | nfcv | ⊢ Ⅎ 𝑥 ℝ | 
						
							| 24 |  | nfcv | ⊢ Ⅎ 𝑥  < | 
						
							| 25 | 22 23 24 | nfsup | ⊢ Ⅎ 𝑥 sup ( ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) ) ,  ℝ ,   <  ) | 
						
							| 26 |  | nfcv | ⊢ Ⅎ 𝑥  − | 
						
							| 27 |  | nfcv | ⊢ Ⅎ 𝑥 𝑌 | 
						
							| 28 | 25 26 27 | nfov | ⊢ Ⅎ 𝑥 ( sup ( ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) ) ,  ℝ ,   <  )  −  𝑌 ) | 
						
							| 29 |  | nfcv | ⊢ Ⅎ 𝑥 𝑤 | 
						
							| 30 | 28 24 29 | nfbr | ⊢ Ⅎ 𝑥 ( sup ( ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) ) ,  ℝ ,   <  )  −  𝑌 )  <  𝑤 | 
						
							| 31 |  | simpl | ⊢ ( ( ( sup ( ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) ) ,  ℝ ,   <  )  −  𝑌 )  <  𝑤  ∧  𝑤  =  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) )  →  ( sup ( ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) ) ,  ℝ ,   <  )  −  𝑌 )  <  𝑤 ) | 
						
							| 32 |  | simpr | ⊢ ( ( ( sup ( ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) ) ,  ℝ ,   <  )  −  𝑌 )  <  𝑤  ∧  𝑤  =  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) )  →  𝑤  =  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 33 | 31 32 | breqtrd | ⊢ ( ( ( sup ( ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) ) ,  ℝ ,   <  )  −  𝑌 )  <  𝑤  ∧  𝑤  =  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) )  →  ( sup ( ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) ) ,  ℝ ,   <  )  −  𝑌 )  <  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 34 | 33 | ex | ⊢ ( ( sup ( ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) ) ,  ℝ ,   <  )  −  𝑌 )  <  𝑤  →  ( 𝑤  =  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 )  →  ( sup ( ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) ) ,  ℝ ,   <  )  −  𝑌 )  <  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 35 | 34 | a1d | ⊢ ( ( sup ( ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) ) ,  ℝ ,   <  )  −  𝑌 )  <  𝑤  →  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  →  ( 𝑤  =  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 )  →  ( sup ( ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) ) ,  ℝ ,   <  )  −  𝑌 )  <  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) ) ) ) | 
						
							| 36 | 30 35 | reximdai | ⊢ ( ( sup ( ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) ) ,  ℝ ,   <  )  −  𝑌 )  <  𝑤  →  ( ∃ 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) 𝑤  =  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 )  →  ∃ 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) ( sup ( ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) ) ,  ℝ ,   <  )  −  𝑌 )  <  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 37 | 36 | adantl | ⊢ ( ( 𝑤  ∈  ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) )  ∧  ( sup ( ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) ) ,  ℝ ,   <  )  −  𝑌 )  <  𝑤 )  →  ( ∃ 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) 𝑤  =  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 )  →  ∃ 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) ( sup ( ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) ) ,  ℝ ,   <  )  −  𝑌 )  <  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 38 | 20 37 | mpd | ⊢ ( ( 𝑤  ∈  ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) )  ∧  ( sup ( ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) ) ,  ℝ ,   <  )  −  𝑌 )  <  𝑤 )  →  ∃ 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) ( sup ( ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) ) ,  ℝ ,   <  )  −  𝑌 )  <  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 39 | 38 | 3adant1 | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) )  ∧  ( sup ( ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) ) ,  ℝ ,   <  )  −  𝑌 )  <  𝑤 )  →  ∃ 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) ( sup ( ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) ) ,  ℝ ,   <  )  −  𝑌 )  <  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 40 |  | simpl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) )  ∧  ( sup ( ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) ) ,  ℝ ,   <  )  −  𝑌 )  <  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) )  →  ( 𝜑  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) ) ) | 
						
							| 41 | 1 2 4 | sge0supre | ⊢ ( 𝜑  →  ( Σ^ ‘ 𝐹 )  =  sup ( ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) ) ,  ℝ ,   <  ) ) | 
						
							| 42 | 41 | oveq1d | ⊢ ( 𝜑  →  ( ( Σ^ ‘ 𝐹 )  −  𝑌 )  =  ( sup ( ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) ) ,  ℝ ,   <  )  −  𝑌 ) ) | 
						
							| 43 | 42 | adantr | ⊢ ( ( 𝜑  ∧  ( sup ( ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) ) ,  ℝ ,   <  )  −  𝑌 )  <  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) )  →  ( ( Σ^ ‘ 𝐹 )  −  𝑌 )  =  ( sup ( ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) ) ,  ℝ ,   <  )  −  𝑌 ) ) | 
						
							| 44 |  | simpr | ⊢ ( ( 𝜑  ∧  ( sup ( ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) ) ,  ℝ ,   <  )  −  𝑌 )  <  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) )  →  ( sup ( ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) ) ,  ℝ ,   <  )  −  𝑌 )  <  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 45 | 43 44 | eqbrtrd | ⊢ ( ( 𝜑  ∧  ( sup ( ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) ) ,  ℝ ,   <  )  −  𝑌 )  <  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) )  →  ( ( Σ^ ‘ 𝐹 )  −  𝑌 )  <  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 46 | 45 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) )  ∧  ( sup ( ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) ) ,  ℝ ,   <  )  −  𝑌 )  <  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) )  →  ( ( Σ^ ‘ 𝐹 )  −  𝑌 )  <  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 47 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) )  ∧  ( ( Σ^ ‘ 𝐹 )  −  𝑌 )  <  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) )  →  ( ( Σ^ ‘ 𝐹 )  −  𝑌 )  <  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 48 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) )  →  ( Σ^ ‘ 𝐹 )  ∈  ℝ ) | 
						
							| 49 | 3 | rpred | ⊢ ( 𝜑  →  𝑌  ∈  ℝ ) | 
						
							| 50 | 49 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) )  →  𝑌  ∈  ℝ ) | 
						
							| 51 |  | elinel2 | ⊢ ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  →  𝑥  ∈  Fin ) | 
						
							| 52 | 51 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) )  →  𝑥  ∈  Fin ) | 
						
							| 53 |  | rge0ssre | ⊢ ( 0 [,) +∞ )  ⊆  ℝ | 
						
							| 54 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) )  →  𝐹 : 𝑋 ⟶ ( 0 [,) +∞ ) ) | 
						
							| 55 | 54 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) )  ∧  𝑦  ∈  𝑥 )  →  𝐹 : 𝑋 ⟶ ( 0 [,) +∞ ) ) | 
						
							| 56 |  | elpwinss | ⊢ ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  →  𝑥  ⊆  𝑋 ) | 
						
							| 57 | 56 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) )  →  𝑥  ⊆  𝑋 ) | 
						
							| 58 | 57 | sselda | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) )  ∧  𝑦  ∈  𝑥 )  →  𝑦  ∈  𝑋 ) | 
						
							| 59 | 55 58 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) )  ∧  𝑦  ∈  𝑥 )  →  ( 𝐹 ‘ 𝑦 )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 60 | 53 59 | sselid | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) )  ∧  𝑦  ∈  𝑥 )  →  ( 𝐹 ‘ 𝑦 )  ∈  ℝ ) | 
						
							| 61 | 52 60 | fsumrecl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) )  →  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 )  ∈  ℝ ) | 
						
							| 62 | 48 50 61 | ltsubaddd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) )  →  ( ( ( Σ^ ‘ 𝐹 )  −  𝑌 )  <  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 )  ↔  ( Σ^ ‘ 𝐹 )  <  ( Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 )  +  𝑌 ) ) ) | 
						
							| 63 | 62 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) )  ∧  ( ( Σ^ ‘ 𝐹 )  −  𝑌 )  <  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) )  →  ( ( ( Σ^ ‘ 𝐹 )  −  𝑌 )  <  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 )  ↔  ( Σ^ ‘ 𝐹 )  <  ( Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 )  +  𝑌 ) ) ) | 
						
							| 64 | 47 63 | mpbid | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) )  ∧  ( ( Σ^ ‘ 𝐹 )  −  𝑌 )  <  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) )  →  ( Σ^ ‘ 𝐹 )  <  ( Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 )  +  𝑌 ) ) | 
						
							| 65 | 54 57 | fssresd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) )  →  ( 𝐹  ↾  𝑥 ) : 𝑥 ⟶ ( 0 [,) +∞ ) ) | 
						
							| 66 | 52 65 | sge0fsum | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) )  →  ( Σ^ ‘ ( 𝐹  ↾  𝑥 ) )  =  Σ 𝑦  ∈  𝑥 ( ( 𝐹  ↾  𝑥 ) ‘ 𝑦 ) ) | 
						
							| 67 |  | fvres | ⊢ ( 𝑦  ∈  𝑥  →  ( ( 𝐹  ↾  𝑥 ) ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 68 | 67 | sumeq2i | ⊢ Σ 𝑦  ∈  𝑥 ( ( 𝐹  ↾  𝑥 ) ‘ 𝑦 )  =  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) | 
						
							| 69 | 68 | a1i | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) )  →  Σ 𝑦  ∈  𝑥 ( ( 𝐹  ↾  𝑥 ) ‘ 𝑦 )  =  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 70 | 66 69 | eqtr2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) )  →  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 )  =  ( Σ^ ‘ ( 𝐹  ↾  𝑥 ) ) ) | 
						
							| 71 | 70 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) )  →  ( Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 )  +  𝑌 )  =  ( ( Σ^ ‘ ( 𝐹  ↾  𝑥 ) )  +  𝑌 ) ) | 
						
							| 72 | 71 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) )  ∧  ( ( Σ^ ‘ 𝐹 )  −  𝑌 )  <  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) )  →  ( Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 )  +  𝑌 )  =  ( ( Σ^ ‘ ( 𝐹  ↾  𝑥 ) )  +  𝑌 ) ) | 
						
							| 73 | 64 72 | breqtrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) )  ∧  ( ( Σ^ ‘ 𝐹 )  −  𝑌 )  <  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) )  →  ( Σ^ ‘ 𝐹 )  <  ( ( Σ^ ‘ ( 𝐹  ↾  𝑥 ) )  +  𝑌 ) ) | 
						
							| 74 | 40 46 73 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) )  ∧  ( sup ( ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) ) ,  ℝ ,   <  )  −  𝑌 )  <  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) )  →  ( Σ^ ‘ 𝐹 )  <  ( ( Σ^ ‘ ( 𝐹  ↾  𝑥 ) )  +  𝑌 ) ) | 
						
							| 75 | 74 | ex | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) )  →  ( ( sup ( ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) ) ,  ℝ ,   <  )  −  𝑌 )  <  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 )  →  ( Σ^ ‘ 𝐹 )  <  ( ( Σ^ ‘ ( 𝐹  ↾  𝑥 ) )  +  𝑌 ) ) ) | 
						
							| 76 | 75 | reximdva | ⊢ ( 𝜑  →  ( ∃ 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) ( sup ( ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) ) ,  ℝ ,   <  )  −  𝑌 )  <  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 )  →  ∃ 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) ( Σ^ ‘ 𝐹 )  <  ( ( Σ^ ‘ ( 𝐹  ↾  𝑥 ) )  +  𝑌 ) ) ) | 
						
							| 77 | 76 | imp | ⊢ ( ( 𝜑  ∧  ∃ 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) ( sup ( ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) ) ,  ℝ ,   <  )  −  𝑌 )  <  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) )  →  ∃ 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) ( Σ^ ‘ 𝐹 )  <  ( ( Σ^ ‘ ( 𝐹  ↾  𝑥 ) )  +  𝑌 ) ) | 
						
							| 78 | 14 39 77 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) )  ∧  ( sup ( ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) ) ,  ℝ ,   <  )  −  𝑌 )  <  𝑤 )  →  ∃ 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) ( Σ^ ‘ 𝐹 )  <  ( ( Σ^ ‘ ( 𝐹  ↾  𝑥 ) )  +  𝑌 ) ) | 
						
							| 79 | 78 | 3exp | ⊢ ( 𝜑  →  ( 𝑤  ∈  ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) )  →  ( ( sup ( ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) ) ,  ℝ ,   <  )  −  𝑌 )  <  𝑤  →  ∃ 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) ( Σ^ ‘ 𝐹 )  <  ( ( Σ^ ‘ ( 𝐹  ↾  𝑥 ) )  +  𝑌 ) ) ) ) | 
						
							| 80 | 12 13 79 | rexlimd | ⊢ ( 𝜑  →  ( ∃ 𝑤  ∈  ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) ) ( sup ( ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) ) ,  ℝ ,   <  )  −  𝑌 )  <  𝑤  →  ∃ 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) ( Σ^ ‘ 𝐹 )  <  ( ( Σ^ ‘ ( 𝐹  ↾  𝑥 ) )  +  𝑌 ) ) ) | 
						
							| 81 | 11 80 | mpd | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) ( Σ^ ‘ 𝐹 )  <  ( ( Σ^ ‘ ( 𝐹  ↾  𝑥 ) )  +  𝑌 ) ) |