| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sge0prle.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑉 ) | 
						
							| 2 |  | sge0prle.b | ⊢ ( 𝜑  →  𝐵  ∈  𝑊 ) | 
						
							| 3 |  | sge0prle.d | ⊢ ( 𝜑  →  𝐷  ∈  ( 0 [,] +∞ ) ) | 
						
							| 4 |  | sge0prle.e | ⊢ ( 𝜑  →  𝐸  ∈  ( 0 [,] +∞ ) ) | 
						
							| 5 |  | sge0prle.cd | ⊢ ( 𝑘  =  𝐴  →  𝐶  =  𝐷 ) | 
						
							| 6 |  | sge0prle.ce | ⊢ ( 𝑘  =  𝐵  →  𝐶  =  𝐸 ) | 
						
							| 7 |  | preq1 | ⊢ ( 𝐴  =  𝐵  →  { 𝐴 ,  𝐵 }  =  { 𝐵 ,  𝐵 } ) | 
						
							| 8 |  | dfsn2 | ⊢ { 𝐵 }  =  { 𝐵 ,  𝐵 } | 
						
							| 9 | 8 | eqcomi | ⊢ { 𝐵 ,  𝐵 }  =  { 𝐵 } | 
						
							| 10 | 9 | a1i | ⊢ ( 𝐴  =  𝐵  →  { 𝐵 ,  𝐵 }  =  { 𝐵 } ) | 
						
							| 11 | 7 10 | eqtrd | ⊢ ( 𝐴  =  𝐵  →  { 𝐴 ,  𝐵 }  =  { 𝐵 } ) | 
						
							| 12 | 11 | mpteq1d | ⊢ ( 𝐴  =  𝐵  →  ( 𝑘  ∈  { 𝐴 ,  𝐵 }  ↦  𝐶 )  =  ( 𝑘  ∈  { 𝐵 }  ↦  𝐶 ) ) | 
						
							| 13 | 12 | fveq2d | ⊢ ( 𝐴  =  𝐵  →  ( Σ^ ‘ ( 𝑘  ∈  { 𝐴 ,  𝐵 }  ↦  𝐶 ) )  =  ( Σ^ ‘ ( 𝑘  ∈  { 𝐵 }  ↦  𝐶 ) ) ) | 
						
							| 14 | 13 | adantl | ⊢ ( ( 𝜑  ∧  𝐴  =  𝐵 )  →  ( Σ^ ‘ ( 𝑘  ∈  { 𝐴 ,  𝐵 }  ↦  𝐶 ) )  =  ( Σ^ ‘ ( 𝑘  ∈  { 𝐵 }  ↦  𝐶 ) ) ) | 
						
							| 15 | 2 4 6 | sge0snmpt | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑘  ∈  { 𝐵 }  ↦  𝐶 ) )  =  𝐸 ) | 
						
							| 16 | 15 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  =  𝐵 )  →  ( Σ^ ‘ ( 𝑘  ∈  { 𝐵 }  ↦  𝐶 ) )  =  𝐸 ) | 
						
							| 17 | 14 16 | eqtrd | ⊢ ( ( 𝜑  ∧  𝐴  =  𝐵 )  →  ( Σ^ ‘ ( 𝑘  ∈  { 𝐴 ,  𝐵 }  ↦  𝐶 ) )  =  𝐸 ) | 
						
							| 18 |  | iccssxr | ⊢ ( 0 [,] +∞ )  ⊆  ℝ* | 
						
							| 19 | 18 4 | sselid | ⊢ ( 𝜑  →  𝐸  ∈  ℝ* ) | 
						
							| 20 | 19 | xaddlidd | ⊢ ( 𝜑  →  ( 0  +𝑒  𝐸 )  =  𝐸 ) | 
						
							| 21 | 20 | eqcomd | ⊢ ( 𝜑  →  𝐸  =  ( 0  +𝑒  𝐸 ) ) | 
						
							| 22 |  | 0xr | ⊢ 0  ∈  ℝ* | 
						
							| 23 | 22 | a1i | ⊢ ( 𝜑  →  0  ∈  ℝ* ) | 
						
							| 24 | 18 3 | sselid | ⊢ ( 𝜑  →  𝐷  ∈  ℝ* ) | 
						
							| 25 |  | pnfxr | ⊢ +∞  ∈  ℝ* | 
						
							| 26 | 25 | a1i | ⊢ ( 𝜑  →  +∞  ∈  ℝ* ) | 
						
							| 27 |  | iccgelb | ⊢ ( ( 0  ∈  ℝ*  ∧  +∞  ∈  ℝ*  ∧  𝐷  ∈  ( 0 [,] +∞ ) )  →  0  ≤  𝐷 ) | 
						
							| 28 | 23 26 3 27 | syl3anc | ⊢ ( 𝜑  →  0  ≤  𝐷 ) | 
						
							| 29 | 23 24 19 28 | xleadd1d | ⊢ ( 𝜑  →  ( 0  +𝑒  𝐸 )  ≤  ( 𝐷  +𝑒  𝐸 ) ) | 
						
							| 30 | 21 29 | eqbrtrd | ⊢ ( 𝜑  →  𝐸  ≤  ( 𝐷  +𝑒  𝐸 ) ) | 
						
							| 31 | 30 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  =  𝐵 )  →  𝐸  ≤  ( 𝐷  +𝑒  𝐸 ) ) | 
						
							| 32 | 17 31 | eqbrtrd | ⊢ ( ( 𝜑  ∧  𝐴  =  𝐵 )  →  ( Σ^ ‘ ( 𝑘  ∈  { 𝐴 ,  𝐵 }  ↦  𝐶 ) )  ≤  ( 𝐷  +𝑒  𝐸 ) ) | 
						
							| 33 | 1 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐴  =  𝐵 )  →  𝐴  ∈  𝑉 ) | 
						
							| 34 | 2 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐴  =  𝐵 )  →  𝐵  ∈  𝑊 ) | 
						
							| 35 | 3 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐴  =  𝐵 )  →  𝐷  ∈  ( 0 [,] +∞ ) ) | 
						
							| 36 | 4 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐴  =  𝐵 )  →  𝐸  ∈  ( 0 [,] +∞ ) ) | 
						
							| 37 |  | neqne | ⊢ ( ¬  𝐴  =  𝐵  →  𝐴  ≠  𝐵 ) | 
						
							| 38 | 37 | adantl | ⊢ ( ( 𝜑  ∧  ¬  𝐴  =  𝐵 )  →  𝐴  ≠  𝐵 ) | 
						
							| 39 | 33 34 35 36 5 6 38 | sge0pr | ⊢ ( ( 𝜑  ∧  ¬  𝐴  =  𝐵 )  →  ( Σ^ ‘ ( 𝑘  ∈  { 𝐴 ,  𝐵 }  ↦  𝐶 ) )  =  ( 𝐷  +𝑒  𝐸 ) ) | 
						
							| 40 | 24 19 | xaddcld | ⊢ ( 𝜑  →  ( 𝐷  +𝑒  𝐸 )  ∈  ℝ* ) | 
						
							| 41 | 40 | xrleidd | ⊢ ( 𝜑  →  ( 𝐷  +𝑒  𝐸 )  ≤  ( 𝐷  +𝑒  𝐸 ) ) | 
						
							| 42 | 41 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐴  =  𝐵 )  →  ( 𝐷  +𝑒  𝐸 )  ≤  ( 𝐷  +𝑒  𝐸 ) ) | 
						
							| 43 | 39 42 | eqbrtrd | ⊢ ( ( 𝜑  ∧  ¬  𝐴  =  𝐵 )  →  ( Σ^ ‘ ( 𝑘  ∈  { 𝐴 ,  𝐵 }  ↦  𝐶 ) )  ≤  ( 𝐷  +𝑒  𝐸 ) ) | 
						
							| 44 | 32 43 | pm2.61dan | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑘  ∈  { 𝐴 ,  𝐵 }  ↦  𝐶 ) )  ≤  ( 𝐷  +𝑒  𝐸 ) ) |