Metamath Proof Explorer


Theorem sge0prle

Description: The sum of a pair of nonnegative extended reals is less than or equal their extended addition. When it is a distinct pair, than equality holds, see sge0pr . (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses sge0prle.a φ A V
sge0prle.b φ B W
sge0prle.d φ D 0 +∞
sge0prle.e φ E 0 +∞
sge0prle.cd k = A C = D
sge0prle.ce k = B C = E
Assertion sge0prle φ sum^ k A B C D + 𝑒 E

Proof

Step Hyp Ref Expression
1 sge0prle.a φ A V
2 sge0prle.b φ B W
3 sge0prle.d φ D 0 +∞
4 sge0prle.e φ E 0 +∞
5 sge0prle.cd k = A C = D
6 sge0prle.ce k = B C = E
7 preq1 A = B A B = B B
8 dfsn2 B = B B
9 8 eqcomi B B = B
10 9 a1i A = B B B = B
11 7 10 eqtrd A = B A B = B
12 11 mpteq1d A = B k A B C = k B C
13 12 fveq2d A = B sum^ k A B C = sum^ k B C
14 13 adantl φ A = B sum^ k A B C = sum^ k B C
15 2 4 6 sge0snmpt φ sum^ k B C = E
16 15 adantr φ A = B sum^ k B C = E
17 14 16 eqtrd φ A = B sum^ k A B C = E
18 iccssxr 0 +∞ *
19 18 4 sseldi φ E *
20 19 xaddid2d φ 0 + 𝑒 E = E
21 20 eqcomd φ E = 0 + 𝑒 E
22 0xr 0 *
23 22 a1i φ 0 *
24 18 3 sseldi φ D *
25 pnfxr +∞ *
26 25 a1i φ +∞ *
27 iccgelb 0 * +∞ * D 0 +∞ 0 D
28 23 26 3 27 syl3anc φ 0 D
29 23 24 19 28 xleadd1d φ 0 + 𝑒 E D + 𝑒 E
30 21 29 eqbrtrd φ E D + 𝑒 E
31 30 adantr φ A = B E D + 𝑒 E
32 17 31 eqbrtrd φ A = B sum^ k A B C D + 𝑒 E
33 1 adantr φ ¬ A = B A V
34 2 adantr φ ¬ A = B B W
35 3 adantr φ ¬ A = B D 0 +∞
36 4 adantr φ ¬ A = B E 0 +∞
37 neqne ¬ A = B A B
38 37 adantl φ ¬ A = B A B
39 33 34 35 36 5 6 38 sge0pr φ ¬ A = B sum^ k A B C = D + 𝑒 E
40 24 19 xaddcld φ D + 𝑒 E *
41 40 xrleidd φ D + 𝑒 E D + 𝑒 E
42 41 adantr φ ¬ A = B D + 𝑒 E D + 𝑒 E
43 39 42 eqbrtrd φ ¬ A = B sum^ k A B C D + 𝑒 E
44 32 43 pm2.61dan φ sum^ k A B C D + 𝑒 E