Metamath Proof Explorer


Theorem xleadd1d

Description: Addition of extended reals preserves the "less than or equal to" relation, in the left slot. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses xleadd1d.1 φA*
xleadd1d.2 φB*
xleadd1d.3 φC*
xleadd1d.4 φAB
Assertion xleadd1d φA+𝑒CB+𝑒C

Proof

Step Hyp Ref Expression
1 xleadd1d.1 φA*
2 xleadd1d.2 φB*
3 xleadd1d.3 φC*
4 xleadd1d.4 φAB
5 xleadd1a A*B*C*ABA+𝑒CB+𝑒C
6 1 2 3 4 5 syl31anc φA+𝑒CB+𝑒C