Metamath Proof Explorer


Theorem sge0pr

Description: Sum of a pair of nonnegative extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses sge0pr.a φ A V
sge0pr.b φ B W
sge0pr.d φ D 0 +∞
sge0pr.e φ E 0 +∞
sge0pr.cd k = A C = D
sge0pr.ce k = B C = E
sge0pr.ab φ A B
Assertion sge0pr φ sum^ k A B C = D + 𝑒 E

Proof

Step Hyp Ref Expression
1 sge0pr.a φ A V
2 sge0pr.b φ B W
3 sge0pr.d φ D 0 +∞
4 sge0pr.e φ E 0 +∞
5 sge0pr.cd k = A C = D
6 sge0pr.ce k = B C = E
7 sge0pr.ab φ A B
8 iccssxr 0 +∞ *
9 8 4 sselid φ E *
10 mnfxr −∞ *
11 10 a1i φ −∞ *
12 0xr 0 *
13 12 a1i φ 0 *
14 mnflt0 −∞ < 0
15 14 a1i φ −∞ < 0
16 pnfxr +∞ *
17 16 a1i φ +∞ *
18 iccgelb 0 * +∞ * E 0 +∞ 0 E
19 13 17 4 18 syl3anc φ 0 E
20 11 13 9 15 19 xrltletrd φ −∞ < E
21 11 9 20 xrgtned φ E −∞
22 xaddpnf2 E * E −∞ +∞ + 𝑒 E = +∞
23 9 21 22 syl2anc φ +∞ + 𝑒 E = +∞
24 23 eqcomd φ +∞ = +∞ + 𝑒 E
25 24 adantr φ D = +∞ +∞ = +∞ + 𝑒 E
26 prex A B V
27 26 a1i φ D = +∞ A B V
28 5 adantl φ k = A C = D
29 3 adantr φ k = A D 0 +∞
30 28 29 eqeltrd φ k = A C 0 +∞
31 30 adantlr φ k A B k = A C 0 +∞
32 simpll φ k A B ¬ k = A φ
33 simpl k A B ¬ k = A k A B
34 neqne ¬ k = A k A
35 34 adantl k A B ¬ k = A k A
36 elprn1 k A B k A k = B
37 33 35 36 syl2anc k A B ¬ k = A k = B
38 37 adantll φ k A B ¬ k = A k = B
39 6 adantl φ k = B C = E
40 4 adantr φ k = B E 0 +∞
41 39 40 eqeltrd φ k = B C 0 +∞
42 32 38 41 syl2anc φ k A B ¬ k = A C 0 +∞
43 31 42 pm2.61dan φ k A B C 0 +∞
44 eqid k A B C = k A B C
45 43 44 fmptd φ k A B C : A B 0 +∞
46 45 adantr φ D = +∞ k A B C : A B 0 +∞
47 id D = +∞ D = +∞
48 47 eqcomd D = +∞ +∞ = D
49 48 adantl φ D = +∞ +∞ = D
50 prid1g D 0 +∞ D D E
51 3 50 syl φ D D E
52 1 2 44 5 6 rnmptpr φ ran k A B C = D E
53 52 eqcomd φ D E = ran k A B C
54 51 53 eleqtrd φ D ran k A B C
55 54 adantr φ D = +∞ D ran k A B C
56 49 55 eqeltrd φ D = +∞ +∞ ran k A B C
57 27 46 56 sge0pnfval φ D = +∞ sum^ k A B C = +∞
58 oveq1 D = +∞ D + 𝑒 E = +∞ + 𝑒 E
59 58 adantl φ D = +∞ D + 𝑒 E = +∞ + 𝑒 E
60 25 57 59 3eqtr4d φ D = +∞ sum^ k A B C = D + 𝑒 E
61 8 3 sselid φ D *
62 iccgelb 0 * +∞ * D 0 +∞ 0 D
63 13 17 3 62 syl3anc φ 0 D
64 11 13 61 15 63 xrltletrd φ −∞ < D
65 11 61 64 xrgtned φ D −∞
66 xaddpnf1 D * D −∞ D + 𝑒 +∞ = +∞
67 61 65 66 syl2anc φ D + 𝑒 +∞ = +∞
68 67 eqcomd φ +∞ = D + 𝑒 +∞
69 68 adantr φ E = +∞ +∞ = D + 𝑒 +∞
70 26 a1i φ E = +∞ A B V
71 45 adantr φ E = +∞ k A B C : A B 0 +∞
72 id E = +∞ E = +∞
73 72 eqcomd E = +∞ +∞ = E
74 73 adantl φ E = +∞ +∞ = E
75 prid2g E 0 +∞ E D E
76 4 75 syl φ E D E
77 76 53 eleqtrd φ E ran k A B C
78 77 adantr φ E = +∞ E ran k A B C
79 74 78 eqeltrd φ E = +∞ +∞ ran k A B C
80 70 71 79 sge0pnfval φ E = +∞ sum^ k A B C = +∞
81 oveq2 E = +∞ D + 𝑒 E = D + 𝑒 +∞
82 81 adantl φ E = +∞ D + 𝑒 E = D + 𝑒 +∞
83 69 80 82 3eqtr4d φ E = +∞ sum^ k A B C = D + 𝑒 E
84 83 adantlr φ ¬ D = +∞ E = +∞ sum^ k A B C = D + 𝑒 E
85 rge0ssre 0 +∞
86 ax-resscn
87 85 86 sstri 0 +∞
88 12 a1i φ ¬ D = +∞ 0 *
89 16 a1i φ ¬ D = +∞ +∞ *
90 61 adantr φ ¬ D = +∞ D *
91 63 adantr φ ¬ D = +∞ 0 D
92 pnfge D * D +∞
93 61 92 syl φ D +∞
94 93 adantr φ ¬ D = +∞ D +∞
95 47 necon3bi ¬ D = +∞ D +∞
96 95 adantl φ ¬ D = +∞ D +∞
97 90 89 94 96 xrleneltd φ ¬ D = +∞ D < +∞
98 88 89 90 91 97 elicod φ ¬ D = +∞ D 0 +∞
99 98 adantr φ ¬ D = +∞ ¬ E = +∞ D 0 +∞
100 87 99 sselid φ ¬ D = +∞ ¬ E = +∞ D
101 12 a1i φ ¬ E = +∞ 0 *
102 16 a1i φ ¬ E = +∞ +∞ *
103 9 adantr φ ¬ E = +∞ E *
104 19 adantr φ ¬ E = +∞ 0 E
105 pnfge E * E +∞
106 9 105 syl φ E +∞
107 106 adantr φ ¬ E = +∞ E +∞
108 72 necon3bi ¬ E = +∞ E +∞
109 108 adantl φ ¬ E = +∞ E +∞
110 103 102 107 109 xrleneltd φ ¬ E = +∞ E < +∞
111 101 102 103 104 110 elicod φ ¬ E = +∞ E 0 +∞
112 87 111 sselid φ ¬ E = +∞ E
113 112 adantlr φ ¬ D = +∞ ¬ E = +∞ E
114 100 113 jca φ ¬ D = +∞ ¬ E = +∞ D E
115 1 2 jca φ A V B W
116 115 ad2antrr φ ¬ D = +∞ ¬ E = +∞ A V B W
117 7 ad2antrr φ ¬ D = +∞ ¬ E = +∞ A B
118 5 6 114 116 117 sumpr φ ¬ D = +∞ ¬ E = +∞ k A B C = D + E
119 prfi A B Fin
120 119 a1i φ ¬ D = +∞ ¬ E = +∞ A B Fin
121 5 adantl φ ¬ D = +∞ k = A C = D
122 98 adantr φ ¬ D = +∞ k = A D 0 +∞
123 121 122 eqeltrd φ ¬ D = +∞ k = A C 0 +∞
124 123 ad4ant14 φ ¬ D = +∞ ¬ E = +∞ k A B k = A C 0 +∞
125 simp-4l φ ¬ D = +∞ ¬ E = +∞ k A B ¬ k = A φ
126 simpllr φ ¬ D = +∞ ¬ E = +∞ k A B ¬ k = A ¬ E = +∞
127 37 adantll φ ¬ D = +∞ ¬ E = +∞ k A B ¬ k = A k = B
128 39 3adant2 φ ¬ E = +∞ k = B C = E
129 111 3adant3 φ ¬ E = +∞ k = B E 0 +∞
130 128 129 eqeltrd φ ¬ E = +∞ k = B C 0 +∞
131 125 126 127 130 syl3anc φ ¬ D = +∞ ¬ E = +∞ k A B ¬ k = A C 0 +∞
132 124 131 pm2.61dan φ ¬ D = +∞ ¬ E = +∞ k A B C 0 +∞
133 120 132 sge0fsummpt φ ¬ D = +∞ ¬ E = +∞ sum^ k A B C = k A B C
134 85 99 sselid φ ¬ D = +∞ ¬ E = +∞ D
135 85 111 sselid φ ¬ E = +∞ E
136 135 adantlr φ ¬ D = +∞ ¬ E = +∞ E
137 rexadd D E D + 𝑒 E = D + E
138 134 136 137 syl2anc φ ¬ D = +∞ ¬ E = +∞ D + 𝑒 E = D + E
139 118 133 138 3eqtr4d φ ¬ D = +∞ ¬ E = +∞ sum^ k A B C = D + 𝑒 E
140 84 139 pm2.61dan φ ¬ D = +∞ sum^ k A B C = D + 𝑒 E
141 60 140 pm2.61dan φ sum^ k A B C = D + 𝑒 E