Description: The arbitrary sum of nonnegative extended reals is greater than or equal to a given extended real number if this number can be approximated from below by finite subsums. (Contributed by Glauco Siliprandi, 17-Aug-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sge0gerp.x | |
|
sge0gerp.f | |
||
sge0gerp.a | |
||
sge0gerp.z | |
||
Assertion | sge0gerp | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sge0gerp.x | |
|
2 | sge0gerp.f | |
|
3 | sge0gerp.a | |
|
4 | sge0gerp.z | |
|
5 | nfv | |
|
6 | simpr | |
|
7 | 2 | adantr | |
8 | elinel1 | |
|
9 | elpwi | |
|
10 | 8 9 | syl | |
11 | 10 | adantl | |
12 | 7 11 | fssresd | |
13 | 6 12 | sge0xrcl | |
14 | 13 | ralrimiva | |
15 | eqid | |
|
16 | 15 | rnmptss | |
17 | 14 16 | syl | |
18 | nfv | |
|
19 | nfmpt1 | |
|
20 | 19 | nfrn | |
21 | nfv | |
|
22 | 20 21 | nfrexw | |
23 | id | |
|
24 | fvexd | |
|
25 | 15 | elrnmpt1 | |
26 | 23 24 25 | syl2anc | |
27 | 26 | 3ad2ant2 | |
28 | simp3 | |
|
29 | nfv | |
|
30 | oveq1 | |
|
31 | 30 | breq2d | |
32 | 29 31 | rspce | |
33 | 27 28 32 | syl2anc | |
34 | 33 | 3exp | |
35 | 18 22 34 | rexlimd | |
36 | 4 35 | mpd | |
37 | 5 17 3 36 | supxrge | |
38 | 1 2 | sge0sup | |
39 | 38 | eqcomd | |
40 | 37 39 | breqtrd | |