Metamath Proof Explorer


Theorem sge0gerp

Description: The arbitrary sum of nonnegative extended reals is greater than or equal to a given extended real number if this number can be approximated from below by finite subsums. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses sge0gerp.x φXV
sge0gerp.f φF:X0+∞
sge0gerp.a φA*
sge0gerp.z φx+z𝒫XFinAsum^Fz+𝑒x
Assertion sge0gerp φAsum^F

Proof

Step Hyp Ref Expression
1 sge0gerp.x φXV
2 sge0gerp.f φF:X0+∞
3 sge0gerp.a φA*
4 sge0gerp.z φx+z𝒫XFinAsum^Fz+𝑒x
5 nfv xφ
6 simpr φz𝒫XFinz𝒫XFin
7 2 adantr φz𝒫XFinF:X0+∞
8 elinel1 z𝒫XFinz𝒫X
9 elpwi z𝒫XzX
10 8 9 syl z𝒫XFinzX
11 10 adantl φz𝒫XFinzX
12 7 11 fssresd φz𝒫XFinFz:z0+∞
13 6 12 sge0xrcl φz𝒫XFinsum^Fz*
14 13 ralrimiva φz𝒫XFinsum^Fz*
15 eqid z𝒫XFinsum^Fz=z𝒫XFinsum^Fz
16 15 rnmptss z𝒫XFinsum^Fz*ranz𝒫XFinsum^Fz*
17 14 16 syl φranz𝒫XFinsum^Fz*
18 nfv zφx+
19 nfmpt1 _zz𝒫XFinsum^Fz
20 19 nfrn _zranz𝒫XFinsum^Fz
21 nfv zAy+𝑒x
22 20 21 nfrexw zyranz𝒫XFinsum^FzAy+𝑒x
23 id z𝒫XFinz𝒫XFin
24 fvexd z𝒫XFinsum^FzV
25 15 elrnmpt1 z𝒫XFinsum^FzVsum^Fzranz𝒫XFinsum^Fz
26 23 24 25 syl2anc z𝒫XFinsum^Fzranz𝒫XFinsum^Fz
27 26 3ad2ant2 φx+z𝒫XFinAsum^Fz+𝑒xsum^Fzranz𝒫XFinsum^Fz
28 simp3 φx+z𝒫XFinAsum^Fz+𝑒xAsum^Fz+𝑒x
29 nfv yAsum^Fz+𝑒x
30 oveq1 y=sum^Fzy+𝑒x=sum^Fz+𝑒x
31 30 breq2d y=sum^FzAy+𝑒xAsum^Fz+𝑒x
32 29 31 rspce sum^Fzranz𝒫XFinsum^FzAsum^Fz+𝑒xyranz𝒫XFinsum^FzAy+𝑒x
33 27 28 32 syl2anc φx+z𝒫XFinAsum^Fz+𝑒xyranz𝒫XFinsum^FzAy+𝑒x
34 33 3exp φx+z𝒫XFinAsum^Fz+𝑒xyranz𝒫XFinsum^FzAy+𝑒x
35 18 22 34 rexlimd φx+z𝒫XFinAsum^Fz+𝑒xyranz𝒫XFinsum^FzAy+𝑒x
36 4 35 mpd φx+yranz𝒫XFinsum^FzAy+𝑒x
37 5 17 3 36 supxrge φAsupranz𝒫XFinsum^Fz*<
38 1 2 sge0sup φsum^F=supranz𝒫XFinsum^Fz*<
39 38 eqcomd φsupranz𝒫XFinsum^Fz*<=sum^F
40 37 39 breqtrd φAsum^F