Metamath Proof Explorer


Theorem sge0gerp

Description: The arbitrary sum of nonnegative extended reals is greater than or equal to a given extended real number if this number can be approximated from below by finite subsums. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses sge0gerp.x φ X V
sge0gerp.f φ F : X 0 +∞
sge0gerp.a φ A *
sge0gerp.z φ x + z 𝒫 X Fin A sum^ F z + 𝑒 x
Assertion sge0gerp φ A sum^ F

Proof

Step Hyp Ref Expression
1 sge0gerp.x φ X V
2 sge0gerp.f φ F : X 0 +∞
3 sge0gerp.a φ A *
4 sge0gerp.z φ x + z 𝒫 X Fin A sum^ F z + 𝑒 x
5 nfv x φ
6 simpr φ z 𝒫 X Fin z 𝒫 X Fin
7 2 adantr φ z 𝒫 X Fin F : X 0 +∞
8 elinel1 z 𝒫 X Fin z 𝒫 X
9 elpwi z 𝒫 X z X
10 8 9 syl z 𝒫 X Fin z X
11 10 adantl φ z 𝒫 X Fin z X
12 7 11 fssresd φ z 𝒫 X Fin F z : z 0 +∞
13 6 12 sge0xrcl φ z 𝒫 X Fin sum^ F z *
14 13 ralrimiva φ z 𝒫 X Fin sum^ F z *
15 eqid z 𝒫 X Fin sum^ F z = z 𝒫 X Fin sum^ F z
16 15 rnmptss z 𝒫 X Fin sum^ F z * ran z 𝒫 X Fin sum^ F z *
17 14 16 syl φ ran z 𝒫 X Fin sum^ F z *
18 nfv z φ x +
19 nfmpt1 _ z z 𝒫 X Fin sum^ F z
20 19 nfrn _ z ran z 𝒫 X Fin sum^ F z
21 nfv z A y + 𝑒 x
22 20 21 nfrex z y ran z 𝒫 X Fin sum^ F z A y + 𝑒 x
23 id z 𝒫 X Fin z 𝒫 X Fin
24 fvexd z 𝒫 X Fin sum^ F z V
25 15 elrnmpt1 z 𝒫 X Fin sum^ F z V sum^ F z ran z 𝒫 X Fin sum^ F z
26 23 24 25 syl2anc z 𝒫 X Fin sum^ F z ran z 𝒫 X Fin sum^ F z
27 26 3ad2ant2 φ x + z 𝒫 X Fin A sum^ F z + 𝑒 x sum^ F z ran z 𝒫 X Fin sum^ F z
28 simp3 φ x + z 𝒫 X Fin A sum^ F z + 𝑒 x A sum^ F z + 𝑒 x
29 nfv y A sum^ F z + 𝑒 x
30 oveq1 y = sum^ F z y + 𝑒 x = sum^ F z + 𝑒 x
31 30 breq2d y = sum^ F z A y + 𝑒 x A sum^ F z + 𝑒 x
32 29 31 rspce sum^ F z ran z 𝒫 X Fin sum^ F z A sum^ F z + 𝑒 x y ran z 𝒫 X Fin sum^ F z A y + 𝑒 x
33 27 28 32 syl2anc φ x + z 𝒫 X Fin A sum^ F z + 𝑒 x y ran z 𝒫 X Fin sum^ F z A y + 𝑒 x
34 33 3exp φ x + z 𝒫 X Fin A sum^ F z + 𝑒 x y ran z 𝒫 X Fin sum^ F z A y + 𝑒 x
35 18 22 34 rexlimd φ x + z 𝒫 X Fin A sum^ F z + 𝑒 x y ran z 𝒫 X Fin sum^ F z A y + 𝑒 x
36 4 35 mpd φ x + y ran z 𝒫 X Fin sum^ F z A y + 𝑒 x
37 5 17 3 36 supxrge φ A sup ran z 𝒫 X Fin sum^ F z * <
38 1 2 sge0sup φ sum^ F = sup ran z 𝒫 X Fin sum^ F z * <
39 38 eqcomd φ sup ran z 𝒫 X Fin sum^ F z * < = sum^ F
40 37 39 breqtrd φ A sum^ F