| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sge0gerp.x |
|- ( ph -> X e. V ) |
| 2 |
|
sge0gerp.f |
|- ( ph -> F : X --> ( 0 [,] +oo ) ) |
| 3 |
|
sge0gerp.a |
|- ( ph -> A e. RR* ) |
| 4 |
|
sge0gerp.z |
|- ( ( ph /\ x e. RR+ ) -> E. z e. ( ~P X i^i Fin ) A <_ ( ( sum^ ` ( F |` z ) ) +e x ) ) |
| 5 |
|
nfv |
|- F/ x ph |
| 6 |
|
simpr |
|- ( ( ph /\ z e. ( ~P X i^i Fin ) ) -> z e. ( ~P X i^i Fin ) ) |
| 7 |
2
|
adantr |
|- ( ( ph /\ z e. ( ~P X i^i Fin ) ) -> F : X --> ( 0 [,] +oo ) ) |
| 8 |
|
elinel1 |
|- ( z e. ( ~P X i^i Fin ) -> z e. ~P X ) |
| 9 |
|
elpwi |
|- ( z e. ~P X -> z C_ X ) |
| 10 |
8 9
|
syl |
|- ( z e. ( ~P X i^i Fin ) -> z C_ X ) |
| 11 |
10
|
adantl |
|- ( ( ph /\ z e. ( ~P X i^i Fin ) ) -> z C_ X ) |
| 12 |
7 11
|
fssresd |
|- ( ( ph /\ z e. ( ~P X i^i Fin ) ) -> ( F |` z ) : z --> ( 0 [,] +oo ) ) |
| 13 |
6 12
|
sge0xrcl |
|- ( ( ph /\ z e. ( ~P X i^i Fin ) ) -> ( sum^ ` ( F |` z ) ) e. RR* ) |
| 14 |
13
|
ralrimiva |
|- ( ph -> A. z e. ( ~P X i^i Fin ) ( sum^ ` ( F |` z ) ) e. RR* ) |
| 15 |
|
eqid |
|- ( z e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` z ) ) ) = ( z e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` z ) ) ) |
| 16 |
15
|
rnmptss |
|- ( A. z e. ( ~P X i^i Fin ) ( sum^ ` ( F |` z ) ) e. RR* -> ran ( z e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` z ) ) ) C_ RR* ) |
| 17 |
14 16
|
syl |
|- ( ph -> ran ( z e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` z ) ) ) C_ RR* ) |
| 18 |
|
nfv |
|- F/ z ( ph /\ x e. RR+ ) |
| 19 |
|
nfmpt1 |
|- F/_ z ( z e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` z ) ) ) |
| 20 |
19
|
nfrn |
|- F/_ z ran ( z e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` z ) ) ) |
| 21 |
|
nfv |
|- F/ z A <_ ( y +e x ) |
| 22 |
20 21
|
nfrexw |
|- F/ z E. y e. ran ( z e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` z ) ) ) A <_ ( y +e x ) |
| 23 |
|
id |
|- ( z e. ( ~P X i^i Fin ) -> z e. ( ~P X i^i Fin ) ) |
| 24 |
|
fvexd |
|- ( z e. ( ~P X i^i Fin ) -> ( sum^ ` ( F |` z ) ) e. _V ) |
| 25 |
15
|
elrnmpt1 |
|- ( ( z e. ( ~P X i^i Fin ) /\ ( sum^ ` ( F |` z ) ) e. _V ) -> ( sum^ ` ( F |` z ) ) e. ran ( z e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` z ) ) ) ) |
| 26 |
23 24 25
|
syl2anc |
|- ( z e. ( ~P X i^i Fin ) -> ( sum^ ` ( F |` z ) ) e. ran ( z e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` z ) ) ) ) |
| 27 |
26
|
3ad2ant2 |
|- ( ( ( ph /\ x e. RR+ ) /\ z e. ( ~P X i^i Fin ) /\ A <_ ( ( sum^ ` ( F |` z ) ) +e x ) ) -> ( sum^ ` ( F |` z ) ) e. ran ( z e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` z ) ) ) ) |
| 28 |
|
simp3 |
|- ( ( ( ph /\ x e. RR+ ) /\ z e. ( ~P X i^i Fin ) /\ A <_ ( ( sum^ ` ( F |` z ) ) +e x ) ) -> A <_ ( ( sum^ ` ( F |` z ) ) +e x ) ) |
| 29 |
|
nfv |
|- F/ y A <_ ( ( sum^ ` ( F |` z ) ) +e x ) |
| 30 |
|
oveq1 |
|- ( y = ( sum^ ` ( F |` z ) ) -> ( y +e x ) = ( ( sum^ ` ( F |` z ) ) +e x ) ) |
| 31 |
30
|
breq2d |
|- ( y = ( sum^ ` ( F |` z ) ) -> ( A <_ ( y +e x ) <-> A <_ ( ( sum^ ` ( F |` z ) ) +e x ) ) ) |
| 32 |
29 31
|
rspce |
|- ( ( ( sum^ ` ( F |` z ) ) e. ran ( z e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` z ) ) ) /\ A <_ ( ( sum^ ` ( F |` z ) ) +e x ) ) -> E. y e. ran ( z e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` z ) ) ) A <_ ( y +e x ) ) |
| 33 |
27 28 32
|
syl2anc |
|- ( ( ( ph /\ x e. RR+ ) /\ z e. ( ~P X i^i Fin ) /\ A <_ ( ( sum^ ` ( F |` z ) ) +e x ) ) -> E. y e. ran ( z e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` z ) ) ) A <_ ( y +e x ) ) |
| 34 |
33
|
3exp |
|- ( ( ph /\ x e. RR+ ) -> ( z e. ( ~P X i^i Fin ) -> ( A <_ ( ( sum^ ` ( F |` z ) ) +e x ) -> E. y e. ran ( z e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` z ) ) ) A <_ ( y +e x ) ) ) ) |
| 35 |
18 22 34
|
rexlimd |
|- ( ( ph /\ x e. RR+ ) -> ( E. z e. ( ~P X i^i Fin ) A <_ ( ( sum^ ` ( F |` z ) ) +e x ) -> E. y e. ran ( z e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` z ) ) ) A <_ ( y +e x ) ) ) |
| 36 |
4 35
|
mpd |
|- ( ( ph /\ x e. RR+ ) -> E. y e. ran ( z e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` z ) ) ) A <_ ( y +e x ) ) |
| 37 |
5 17 3 36
|
supxrge |
|- ( ph -> A <_ sup ( ran ( z e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` z ) ) ) , RR* , < ) ) |
| 38 |
1 2
|
sge0sup |
|- ( ph -> ( sum^ ` F ) = sup ( ran ( z e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` z ) ) ) , RR* , < ) ) |
| 39 |
38
|
eqcomd |
|- ( ph -> sup ( ran ( z e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` z ) ) ) , RR* , < ) = ( sum^ ` F ) ) |
| 40 |
37 39
|
breqtrd |
|- ( ph -> A <_ ( sum^ ` F ) ) |