| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sge0pnffigt.x |  |-  ( ph -> X e. V ) | 
						
							| 2 |  | sge0pnffigt.f |  |-  ( ph -> F : X --> ( 0 [,] +oo ) ) | 
						
							| 3 |  | sge0pnffigt.pnf |  |-  ( ph -> ( sum^ ` F ) = +oo ) | 
						
							| 4 |  | sge0pnffigt.y |  |-  ( ph -> Y e. RR ) | 
						
							| 5 | 1 2 | sge0sup |  |-  ( ph -> ( sum^ ` F ) = sup ( ran ( x e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` x ) ) ) , RR* , < ) ) | 
						
							| 6 | 5 3 | eqtr3d |  |-  ( ph -> sup ( ran ( x e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` x ) ) ) , RR* , < ) = +oo ) | 
						
							| 7 |  | vex |  |-  x e. _V | 
						
							| 8 | 7 | a1i |  |-  ( ( ph /\ x e. ( ~P X i^i Fin ) ) -> x e. _V ) | 
						
							| 9 | 2 | adantr |  |-  ( ( ph /\ x e. ( ~P X i^i Fin ) ) -> F : X --> ( 0 [,] +oo ) ) | 
						
							| 10 |  | elpwinss |  |-  ( x e. ( ~P X i^i Fin ) -> x C_ X ) | 
						
							| 11 | 10 | adantl |  |-  ( ( ph /\ x e. ( ~P X i^i Fin ) ) -> x C_ X ) | 
						
							| 12 | 9 11 | fssresd |  |-  ( ( ph /\ x e. ( ~P X i^i Fin ) ) -> ( F |` x ) : x --> ( 0 [,] +oo ) ) | 
						
							| 13 | 8 12 | sge0xrcl |  |-  ( ( ph /\ x e. ( ~P X i^i Fin ) ) -> ( sum^ ` ( F |` x ) ) e. RR* ) | 
						
							| 14 | 13 | ralrimiva |  |-  ( ph -> A. x e. ( ~P X i^i Fin ) ( sum^ ` ( F |` x ) ) e. RR* ) | 
						
							| 15 |  | eqid |  |-  ( x e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` x ) ) ) = ( x e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` x ) ) ) | 
						
							| 16 | 15 | rnmptss |  |-  ( A. x e. ( ~P X i^i Fin ) ( sum^ ` ( F |` x ) ) e. RR* -> ran ( x e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` x ) ) ) C_ RR* ) | 
						
							| 17 | 14 16 | syl |  |-  ( ph -> ran ( x e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` x ) ) ) C_ RR* ) | 
						
							| 18 |  | supxrunb2 |  |-  ( ran ( x e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` x ) ) ) C_ RR* -> ( A. y e. RR E. z e. ran ( x e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` x ) ) ) y < z <-> sup ( ran ( x e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` x ) ) ) , RR* , < ) = +oo ) ) | 
						
							| 19 | 17 18 | syl |  |-  ( ph -> ( A. y e. RR E. z e. ran ( x e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` x ) ) ) y < z <-> sup ( ran ( x e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` x ) ) ) , RR* , < ) = +oo ) ) | 
						
							| 20 | 6 19 | mpbird |  |-  ( ph -> A. y e. RR E. z e. ran ( x e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` x ) ) ) y < z ) | 
						
							| 21 |  | breq1 |  |-  ( y = Y -> ( y < z <-> Y < z ) ) | 
						
							| 22 | 21 | rexbidv |  |-  ( y = Y -> ( E. z e. ran ( x e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` x ) ) ) y < z <-> E. z e. ran ( x e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` x ) ) ) Y < z ) ) | 
						
							| 23 | 22 | rspcva |  |-  ( ( Y e. RR /\ A. y e. RR E. z e. ran ( x e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` x ) ) ) y < z ) -> E. z e. ran ( x e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` x ) ) ) Y < z ) | 
						
							| 24 | 4 20 23 | syl2anc |  |-  ( ph -> E. z e. ran ( x e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` x ) ) ) Y < z ) | 
						
							| 25 |  | vex |  |-  z e. _V | 
						
							| 26 | 15 | elrnmpt |  |-  ( z e. _V -> ( z e. ran ( x e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` x ) ) ) <-> E. x e. ( ~P X i^i Fin ) z = ( sum^ ` ( F |` x ) ) ) ) | 
						
							| 27 | 25 26 | ax-mp |  |-  ( z e. ran ( x e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` x ) ) ) <-> E. x e. ( ~P X i^i Fin ) z = ( sum^ ` ( F |` x ) ) ) | 
						
							| 28 | 27 | biimpi |  |-  ( z e. ran ( x e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` x ) ) ) -> E. x e. ( ~P X i^i Fin ) z = ( sum^ ` ( F |` x ) ) ) | 
						
							| 29 | 28 | 3ad2ant2 |  |-  ( ( ph /\ z e. ran ( x e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` x ) ) ) /\ Y < z ) -> E. x e. ( ~P X i^i Fin ) z = ( sum^ ` ( F |` x ) ) ) | 
						
							| 30 |  | nfv |  |-  F/ x ph | 
						
							| 31 |  | nfcv |  |-  F/_ x z | 
						
							| 32 |  | nfmpt1 |  |-  F/_ x ( x e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` x ) ) ) | 
						
							| 33 | 32 | nfrn |  |-  F/_ x ran ( x e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` x ) ) ) | 
						
							| 34 | 31 33 | nfel |  |-  F/ x z e. ran ( x e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` x ) ) ) | 
						
							| 35 |  | nfv |  |-  F/ x Y < z | 
						
							| 36 | 30 34 35 | nf3an |  |-  F/ x ( ph /\ z e. ran ( x e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` x ) ) ) /\ Y < z ) | 
						
							| 37 |  | simpl |  |-  ( ( Y < z /\ z = ( sum^ ` ( F |` x ) ) ) -> Y < z ) | 
						
							| 38 |  | simpr |  |-  ( ( Y < z /\ z = ( sum^ ` ( F |` x ) ) ) -> z = ( sum^ ` ( F |` x ) ) ) | 
						
							| 39 | 38 | breq2d |  |-  ( ( Y < z /\ z = ( sum^ ` ( F |` x ) ) ) -> ( Y < z <-> Y < ( sum^ ` ( F |` x ) ) ) ) | 
						
							| 40 | 37 39 | mpbid |  |-  ( ( Y < z /\ z = ( sum^ ` ( F |` x ) ) ) -> Y < ( sum^ ` ( F |` x ) ) ) | 
						
							| 41 | 40 | ex |  |-  ( Y < z -> ( z = ( sum^ ` ( F |` x ) ) -> Y < ( sum^ ` ( F |` x ) ) ) ) | 
						
							| 42 | 41 | adantl |  |-  ( ( ph /\ Y < z ) -> ( z = ( sum^ ` ( F |` x ) ) -> Y < ( sum^ ` ( F |` x ) ) ) ) | 
						
							| 43 | 42 | a1d |  |-  ( ( ph /\ Y < z ) -> ( x e. ( ~P X i^i Fin ) -> ( z = ( sum^ ` ( F |` x ) ) -> Y < ( sum^ ` ( F |` x ) ) ) ) ) | 
						
							| 44 | 43 | 3adant2 |  |-  ( ( ph /\ z e. ran ( x e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` x ) ) ) /\ Y < z ) -> ( x e. ( ~P X i^i Fin ) -> ( z = ( sum^ ` ( F |` x ) ) -> Y < ( sum^ ` ( F |` x ) ) ) ) ) | 
						
							| 45 | 36 44 | reximdai |  |-  ( ( ph /\ z e. ran ( x e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` x ) ) ) /\ Y < z ) -> ( E. x e. ( ~P X i^i Fin ) z = ( sum^ ` ( F |` x ) ) -> E. x e. ( ~P X i^i Fin ) Y < ( sum^ ` ( F |` x ) ) ) ) | 
						
							| 46 | 29 45 | mpd |  |-  ( ( ph /\ z e. ran ( x e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` x ) ) ) /\ Y < z ) -> E. x e. ( ~P X i^i Fin ) Y < ( sum^ ` ( F |` x ) ) ) | 
						
							| 47 | 46 | 3exp |  |-  ( ph -> ( z e. ran ( x e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` x ) ) ) -> ( Y < z -> E. x e. ( ~P X i^i Fin ) Y < ( sum^ ` ( F |` x ) ) ) ) ) | 
						
							| 48 | 47 | rexlimdv |  |-  ( ph -> ( E. z e. ran ( x e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` x ) ) ) Y < z -> E. x e. ( ~P X i^i Fin ) Y < ( sum^ ` ( F |` x ) ) ) ) | 
						
							| 49 | 24 48 | mpd |  |-  ( ph -> E. x e. ( ~P X i^i Fin ) Y < ( sum^ ` ( F |` x ) ) ) |