Step |
Hyp |
Ref |
Expression |
1 |
|
sge0pnffigt.x |
|- ( ph -> X e. V ) |
2 |
|
sge0pnffigt.f |
|- ( ph -> F : X --> ( 0 [,] +oo ) ) |
3 |
|
sge0pnffigt.pnf |
|- ( ph -> ( sum^ ` F ) = +oo ) |
4 |
|
sge0pnffigt.y |
|- ( ph -> Y e. RR ) |
5 |
1 2
|
sge0sup |
|- ( ph -> ( sum^ ` F ) = sup ( ran ( x e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` x ) ) ) , RR* , < ) ) |
6 |
5 3
|
eqtr3d |
|- ( ph -> sup ( ran ( x e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` x ) ) ) , RR* , < ) = +oo ) |
7 |
|
vex |
|- x e. _V |
8 |
7
|
a1i |
|- ( ( ph /\ x e. ( ~P X i^i Fin ) ) -> x e. _V ) |
9 |
2
|
adantr |
|- ( ( ph /\ x e. ( ~P X i^i Fin ) ) -> F : X --> ( 0 [,] +oo ) ) |
10 |
|
elpwinss |
|- ( x e. ( ~P X i^i Fin ) -> x C_ X ) |
11 |
10
|
adantl |
|- ( ( ph /\ x e. ( ~P X i^i Fin ) ) -> x C_ X ) |
12 |
9 11
|
fssresd |
|- ( ( ph /\ x e. ( ~P X i^i Fin ) ) -> ( F |` x ) : x --> ( 0 [,] +oo ) ) |
13 |
8 12
|
sge0xrcl |
|- ( ( ph /\ x e. ( ~P X i^i Fin ) ) -> ( sum^ ` ( F |` x ) ) e. RR* ) |
14 |
13
|
ralrimiva |
|- ( ph -> A. x e. ( ~P X i^i Fin ) ( sum^ ` ( F |` x ) ) e. RR* ) |
15 |
|
eqid |
|- ( x e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` x ) ) ) = ( x e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` x ) ) ) |
16 |
15
|
rnmptss |
|- ( A. x e. ( ~P X i^i Fin ) ( sum^ ` ( F |` x ) ) e. RR* -> ran ( x e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` x ) ) ) C_ RR* ) |
17 |
14 16
|
syl |
|- ( ph -> ran ( x e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` x ) ) ) C_ RR* ) |
18 |
|
supxrunb2 |
|- ( ran ( x e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` x ) ) ) C_ RR* -> ( A. y e. RR E. z e. ran ( x e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` x ) ) ) y < z <-> sup ( ran ( x e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` x ) ) ) , RR* , < ) = +oo ) ) |
19 |
17 18
|
syl |
|- ( ph -> ( A. y e. RR E. z e. ran ( x e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` x ) ) ) y < z <-> sup ( ran ( x e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` x ) ) ) , RR* , < ) = +oo ) ) |
20 |
6 19
|
mpbird |
|- ( ph -> A. y e. RR E. z e. ran ( x e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` x ) ) ) y < z ) |
21 |
|
breq1 |
|- ( y = Y -> ( y < z <-> Y < z ) ) |
22 |
21
|
rexbidv |
|- ( y = Y -> ( E. z e. ran ( x e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` x ) ) ) y < z <-> E. z e. ran ( x e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` x ) ) ) Y < z ) ) |
23 |
22
|
rspcva |
|- ( ( Y e. RR /\ A. y e. RR E. z e. ran ( x e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` x ) ) ) y < z ) -> E. z e. ran ( x e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` x ) ) ) Y < z ) |
24 |
4 20 23
|
syl2anc |
|- ( ph -> E. z e. ran ( x e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` x ) ) ) Y < z ) |
25 |
|
vex |
|- z e. _V |
26 |
15
|
elrnmpt |
|- ( z e. _V -> ( z e. ran ( x e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` x ) ) ) <-> E. x e. ( ~P X i^i Fin ) z = ( sum^ ` ( F |` x ) ) ) ) |
27 |
25 26
|
ax-mp |
|- ( z e. ran ( x e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` x ) ) ) <-> E. x e. ( ~P X i^i Fin ) z = ( sum^ ` ( F |` x ) ) ) |
28 |
27
|
biimpi |
|- ( z e. ran ( x e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` x ) ) ) -> E. x e. ( ~P X i^i Fin ) z = ( sum^ ` ( F |` x ) ) ) |
29 |
28
|
3ad2ant2 |
|- ( ( ph /\ z e. ran ( x e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` x ) ) ) /\ Y < z ) -> E. x e. ( ~P X i^i Fin ) z = ( sum^ ` ( F |` x ) ) ) |
30 |
|
nfv |
|- F/ x ph |
31 |
|
nfcv |
|- F/_ x z |
32 |
|
nfmpt1 |
|- F/_ x ( x e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` x ) ) ) |
33 |
32
|
nfrn |
|- F/_ x ran ( x e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` x ) ) ) |
34 |
31 33
|
nfel |
|- F/ x z e. ran ( x e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` x ) ) ) |
35 |
|
nfv |
|- F/ x Y < z |
36 |
30 34 35
|
nf3an |
|- F/ x ( ph /\ z e. ran ( x e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` x ) ) ) /\ Y < z ) |
37 |
|
simpl |
|- ( ( Y < z /\ z = ( sum^ ` ( F |` x ) ) ) -> Y < z ) |
38 |
|
simpr |
|- ( ( Y < z /\ z = ( sum^ ` ( F |` x ) ) ) -> z = ( sum^ ` ( F |` x ) ) ) |
39 |
38
|
breq2d |
|- ( ( Y < z /\ z = ( sum^ ` ( F |` x ) ) ) -> ( Y < z <-> Y < ( sum^ ` ( F |` x ) ) ) ) |
40 |
37 39
|
mpbid |
|- ( ( Y < z /\ z = ( sum^ ` ( F |` x ) ) ) -> Y < ( sum^ ` ( F |` x ) ) ) |
41 |
40
|
ex |
|- ( Y < z -> ( z = ( sum^ ` ( F |` x ) ) -> Y < ( sum^ ` ( F |` x ) ) ) ) |
42 |
41
|
adantl |
|- ( ( ph /\ Y < z ) -> ( z = ( sum^ ` ( F |` x ) ) -> Y < ( sum^ ` ( F |` x ) ) ) ) |
43 |
42
|
a1d |
|- ( ( ph /\ Y < z ) -> ( x e. ( ~P X i^i Fin ) -> ( z = ( sum^ ` ( F |` x ) ) -> Y < ( sum^ ` ( F |` x ) ) ) ) ) |
44 |
43
|
3adant2 |
|- ( ( ph /\ z e. ran ( x e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` x ) ) ) /\ Y < z ) -> ( x e. ( ~P X i^i Fin ) -> ( z = ( sum^ ` ( F |` x ) ) -> Y < ( sum^ ` ( F |` x ) ) ) ) ) |
45 |
36 44
|
reximdai |
|- ( ( ph /\ z e. ran ( x e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` x ) ) ) /\ Y < z ) -> ( E. x e. ( ~P X i^i Fin ) z = ( sum^ ` ( F |` x ) ) -> E. x e. ( ~P X i^i Fin ) Y < ( sum^ ` ( F |` x ) ) ) ) |
46 |
29 45
|
mpd |
|- ( ( ph /\ z e. ran ( x e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` x ) ) ) /\ Y < z ) -> E. x e. ( ~P X i^i Fin ) Y < ( sum^ ` ( F |` x ) ) ) |
47 |
46
|
3exp |
|- ( ph -> ( z e. ran ( x e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` x ) ) ) -> ( Y < z -> E. x e. ( ~P X i^i Fin ) Y < ( sum^ ` ( F |` x ) ) ) ) ) |
48 |
47
|
rexlimdv |
|- ( ph -> ( E. z e. ran ( x e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` x ) ) ) Y < z -> E. x e. ( ~P X i^i Fin ) Y < ( sum^ ` ( F |` x ) ) ) ) |
49 |
24 48
|
mpd |
|- ( ph -> E. x e. ( ~P X i^i Fin ) Y < ( sum^ ` ( F |` x ) ) ) |