Step |
Hyp |
Ref |
Expression |
1 |
|
sge0less.x |
|- ( ph -> X e. V ) |
2 |
|
sge0less.f |
|- ( ph -> F : X --> ( 0 [,] +oo ) ) |
3 |
|
sge0ssre.re |
|- ( ph -> ( sum^ ` F ) e. RR ) |
4 |
|
inex1g |
|- ( X e. V -> ( X i^i Y ) e. _V ) |
5 |
1 4
|
syl |
|- ( ph -> ( X i^i Y ) e. _V ) |
6 |
|
fresin |
|- ( F : X --> ( 0 [,] +oo ) -> ( F |` Y ) : ( X i^i Y ) --> ( 0 [,] +oo ) ) |
7 |
2 6
|
syl |
|- ( ph -> ( F |` Y ) : ( X i^i Y ) --> ( 0 [,] +oo ) ) |
8 |
5 7
|
sge0xrcl |
|- ( ph -> ( sum^ ` ( F |` Y ) ) e. RR* ) |
9 |
|
mnfxr |
|- -oo e. RR* |
10 |
9
|
a1i |
|- ( ph -> -oo e. RR* ) |
11 |
|
0xr |
|- 0 e. RR* |
12 |
11
|
a1i |
|- ( ph -> 0 e. RR* ) |
13 |
|
mnflt0 |
|- -oo < 0 |
14 |
13
|
a1i |
|- ( ph -> -oo < 0 ) |
15 |
5 7
|
sge0ge0 |
|- ( ph -> 0 <_ ( sum^ ` ( F |` Y ) ) ) |
16 |
10 12 8 14 15
|
xrltletrd |
|- ( ph -> -oo < ( sum^ ` ( F |` Y ) ) ) |
17 |
1 2
|
sge0less |
|- ( ph -> ( sum^ ` ( F |` Y ) ) <_ ( sum^ ` F ) ) |
18 |
|
xrre |
|- ( ( ( ( sum^ ` ( F |` Y ) ) e. RR* /\ ( sum^ ` F ) e. RR ) /\ ( -oo < ( sum^ ` ( F |` Y ) ) /\ ( sum^ ` ( F |` Y ) ) <_ ( sum^ ` F ) ) ) -> ( sum^ ` ( F |` Y ) ) e. RR ) |
19 |
8 3 16 17 18
|
syl22anc |
|- ( ph -> ( sum^ ` ( F |` Y ) ) e. RR ) |