| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sge0pnffigt.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 2 |
|
sge0pnffigt.f |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) ) |
| 3 |
|
sge0pnffigt.pnf |
⊢ ( 𝜑 → ( Σ^ ‘ 𝐹 ) = +∞ ) |
| 4 |
|
sge0pnffigt.y |
⊢ ( 𝜑 → 𝑌 ∈ ℝ ) |
| 5 |
1 2
|
sge0sup |
⊢ ( 𝜑 → ( Σ^ ‘ 𝐹 ) = sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ) , ℝ* , < ) ) |
| 6 |
5 3
|
eqtr3d |
⊢ ( 𝜑 → sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ) , ℝ* , < ) = +∞ ) |
| 7 |
|
vex |
⊢ 𝑥 ∈ V |
| 8 |
7
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → 𝑥 ∈ V ) |
| 9 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → 𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) ) |
| 10 |
|
elpwinss |
⊢ ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) → 𝑥 ⊆ 𝑋 ) |
| 11 |
10
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → 𝑥 ⊆ 𝑋 ) |
| 12 |
9 11
|
fssresd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( 𝐹 ↾ 𝑥 ) : 𝑥 ⟶ ( 0 [,] +∞ ) ) |
| 13 |
8 12
|
sge0xrcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ∈ ℝ* ) |
| 14 |
13
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ∈ ℝ* ) |
| 15 |
|
eqid |
⊢ ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ) = ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ) |
| 16 |
15
|
rnmptss |
⊢ ( ∀ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ∈ ℝ* → ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ) ⊆ ℝ* ) |
| 17 |
14 16
|
syl |
⊢ ( 𝜑 → ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ) ⊆ ℝ* ) |
| 18 |
|
supxrunb2 |
⊢ ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ) ⊆ ℝ* → ( ∀ 𝑦 ∈ ℝ ∃ 𝑧 ∈ ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ) 𝑦 < 𝑧 ↔ sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ) , ℝ* , < ) = +∞ ) ) |
| 19 |
17 18
|
syl |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ ℝ ∃ 𝑧 ∈ ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ) 𝑦 < 𝑧 ↔ sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ) , ℝ* , < ) = +∞ ) ) |
| 20 |
6 19
|
mpbird |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ℝ ∃ 𝑧 ∈ ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ) 𝑦 < 𝑧 ) |
| 21 |
|
breq1 |
⊢ ( 𝑦 = 𝑌 → ( 𝑦 < 𝑧 ↔ 𝑌 < 𝑧 ) ) |
| 22 |
21
|
rexbidv |
⊢ ( 𝑦 = 𝑌 → ( ∃ 𝑧 ∈ ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ) 𝑦 < 𝑧 ↔ ∃ 𝑧 ∈ ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ) 𝑌 < 𝑧 ) ) |
| 23 |
22
|
rspcva |
⊢ ( ( 𝑌 ∈ ℝ ∧ ∀ 𝑦 ∈ ℝ ∃ 𝑧 ∈ ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ) 𝑦 < 𝑧 ) → ∃ 𝑧 ∈ ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ) 𝑌 < 𝑧 ) |
| 24 |
4 20 23
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑧 ∈ ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ) 𝑌 < 𝑧 ) |
| 25 |
|
vex |
⊢ 𝑧 ∈ V |
| 26 |
15
|
elrnmpt |
⊢ ( 𝑧 ∈ V → ( 𝑧 ∈ ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ) ↔ ∃ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) 𝑧 = ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ) ) |
| 27 |
25 26
|
ax-mp |
⊢ ( 𝑧 ∈ ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ) ↔ ∃ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) 𝑧 = ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ) |
| 28 |
27
|
biimpi |
⊢ ( 𝑧 ∈ ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ) → ∃ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) 𝑧 = ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ) |
| 29 |
28
|
3ad2ant2 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ) ∧ 𝑌 < 𝑧 ) → ∃ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) 𝑧 = ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ) |
| 30 |
|
nfv |
⊢ Ⅎ 𝑥 𝜑 |
| 31 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑧 |
| 32 |
|
nfmpt1 |
⊢ Ⅎ 𝑥 ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ) |
| 33 |
32
|
nfrn |
⊢ Ⅎ 𝑥 ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ) |
| 34 |
31 33
|
nfel |
⊢ Ⅎ 𝑥 𝑧 ∈ ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ) |
| 35 |
|
nfv |
⊢ Ⅎ 𝑥 𝑌 < 𝑧 |
| 36 |
30 34 35
|
nf3an |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ 𝑧 ∈ ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ) ∧ 𝑌 < 𝑧 ) |
| 37 |
|
simpl |
⊢ ( ( 𝑌 < 𝑧 ∧ 𝑧 = ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ) → 𝑌 < 𝑧 ) |
| 38 |
|
simpr |
⊢ ( ( 𝑌 < 𝑧 ∧ 𝑧 = ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ) → 𝑧 = ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ) |
| 39 |
38
|
breq2d |
⊢ ( ( 𝑌 < 𝑧 ∧ 𝑧 = ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ) → ( 𝑌 < 𝑧 ↔ 𝑌 < ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ) ) |
| 40 |
37 39
|
mpbid |
⊢ ( ( 𝑌 < 𝑧 ∧ 𝑧 = ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ) → 𝑌 < ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ) |
| 41 |
40
|
ex |
⊢ ( 𝑌 < 𝑧 → ( 𝑧 = ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) → 𝑌 < ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ) ) |
| 42 |
41
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑌 < 𝑧 ) → ( 𝑧 = ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) → 𝑌 < ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ) ) |
| 43 |
42
|
a1d |
⊢ ( ( 𝜑 ∧ 𝑌 < 𝑧 ) → ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) → ( 𝑧 = ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) → 𝑌 < ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ) ) ) |
| 44 |
43
|
3adant2 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ) ∧ 𝑌 < 𝑧 ) → ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) → ( 𝑧 = ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) → 𝑌 < ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ) ) ) |
| 45 |
36 44
|
reximdai |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ) ∧ 𝑌 < 𝑧 ) → ( ∃ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) 𝑧 = ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) → ∃ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) 𝑌 < ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ) ) |
| 46 |
29 45
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ) ∧ 𝑌 < 𝑧 ) → ∃ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) 𝑌 < ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ) |
| 47 |
46
|
3exp |
⊢ ( 𝜑 → ( 𝑧 ∈ ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ) → ( 𝑌 < 𝑧 → ∃ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) 𝑌 < ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ) ) ) |
| 48 |
47
|
rexlimdv |
⊢ ( 𝜑 → ( ∃ 𝑧 ∈ ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ) 𝑌 < 𝑧 → ∃ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) 𝑌 < ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ) ) |
| 49 |
24 48
|
mpd |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) 𝑌 < ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ) |