Metamath Proof Explorer


Theorem sge0pnffigt

Description: If the sum of nonnegative extended reals is +oo , then any real number can be dominated by finite subsums. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses sge0pnffigt.x φ X V
sge0pnffigt.f φ F : X 0 +∞
sge0pnffigt.pnf φ sum^ F = +∞
sge0pnffigt.y φ Y
Assertion sge0pnffigt φ x 𝒫 X Fin Y < sum^ F x

Proof

Step Hyp Ref Expression
1 sge0pnffigt.x φ X V
2 sge0pnffigt.f φ F : X 0 +∞
3 sge0pnffigt.pnf φ sum^ F = +∞
4 sge0pnffigt.y φ Y
5 1 2 sge0sup φ sum^ F = sup ran x 𝒫 X Fin sum^ F x * <
6 5 3 eqtr3d φ sup ran x 𝒫 X Fin sum^ F x * < = +∞
7 vex x V
8 7 a1i φ x 𝒫 X Fin x V
9 2 adantr φ x 𝒫 X Fin F : X 0 +∞
10 elpwinss x 𝒫 X Fin x X
11 10 adantl φ x 𝒫 X Fin x X
12 9 11 fssresd φ x 𝒫 X Fin F x : x 0 +∞
13 8 12 sge0xrcl φ x 𝒫 X Fin sum^ F x *
14 13 ralrimiva φ x 𝒫 X Fin sum^ F x *
15 eqid x 𝒫 X Fin sum^ F x = x 𝒫 X Fin sum^ F x
16 15 rnmptss x 𝒫 X Fin sum^ F x * ran x 𝒫 X Fin sum^ F x *
17 14 16 syl φ ran x 𝒫 X Fin sum^ F x *
18 supxrunb2 ran x 𝒫 X Fin sum^ F x * y z ran x 𝒫 X Fin sum^ F x y < z sup ran x 𝒫 X Fin sum^ F x * < = +∞
19 17 18 syl φ y z ran x 𝒫 X Fin sum^ F x y < z sup ran x 𝒫 X Fin sum^ F x * < = +∞
20 6 19 mpbird φ y z ran x 𝒫 X Fin sum^ F x y < z
21 breq1 y = Y y < z Y < z
22 21 rexbidv y = Y z ran x 𝒫 X Fin sum^ F x y < z z ran x 𝒫 X Fin sum^ F x Y < z
23 22 rspcva Y y z ran x 𝒫 X Fin sum^ F x y < z z ran x 𝒫 X Fin sum^ F x Y < z
24 4 20 23 syl2anc φ z ran x 𝒫 X Fin sum^ F x Y < z
25 vex z V
26 15 elrnmpt z V z ran x 𝒫 X Fin sum^ F x x 𝒫 X Fin z = sum^ F x
27 25 26 ax-mp z ran x 𝒫 X Fin sum^ F x x 𝒫 X Fin z = sum^ F x
28 27 biimpi z ran x 𝒫 X Fin sum^ F x x 𝒫 X Fin z = sum^ F x
29 28 3ad2ant2 φ z ran x 𝒫 X Fin sum^ F x Y < z x 𝒫 X Fin z = sum^ F x
30 nfv x φ
31 nfcv _ x z
32 nfmpt1 _ x x 𝒫 X Fin sum^ F x
33 32 nfrn _ x ran x 𝒫 X Fin sum^ F x
34 31 33 nfel x z ran x 𝒫 X Fin sum^ F x
35 nfv x Y < z
36 30 34 35 nf3an x φ z ran x 𝒫 X Fin sum^ F x Y < z
37 simpl Y < z z = sum^ F x Y < z
38 simpr Y < z z = sum^ F x z = sum^ F x
39 38 breq2d Y < z z = sum^ F x Y < z Y < sum^ F x
40 37 39 mpbid Y < z z = sum^ F x Y < sum^ F x
41 40 ex Y < z z = sum^ F x Y < sum^ F x
42 41 adantl φ Y < z z = sum^ F x Y < sum^ F x
43 42 a1d φ Y < z x 𝒫 X Fin z = sum^ F x Y < sum^ F x
44 43 3adant2 φ z ran x 𝒫 X Fin sum^ F x Y < z x 𝒫 X Fin z = sum^ F x Y < sum^ F x
45 36 44 reximdai φ z ran x 𝒫 X Fin sum^ F x Y < z x 𝒫 X Fin z = sum^ F x x 𝒫 X Fin Y < sum^ F x
46 29 45 mpd φ z ran x 𝒫 X Fin sum^ F x Y < z x 𝒫 X Fin Y < sum^ F x
47 46 3exp φ z ran x 𝒫 X Fin sum^ F x Y < z x 𝒫 X Fin Y < sum^ F x
48 47 rexlimdv φ z ran x 𝒫 X Fin sum^ F x Y < z x 𝒫 X Fin Y < sum^ F x
49 24 48 mpd φ x 𝒫 X Fin Y < sum^ F x