Description: The supremum of an unbounded-above set of extended reals is plus infinity. (Contributed by NM, 19-Jan-2006)
Ref | Expression | ||
---|---|---|---|
Assertion | supxrunb2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel | |
|
2 | pnfnlt | |
|
3 | 1 2 | syl6 | |
4 | 3 | ralrimiv | |
5 | 4 | adantr | |
6 | breq1 | |
|
7 | 6 | rexbidv | |
8 | 7 | rspcva | |
9 | 8 | adantrr | |
10 | 9 | ancoms | |
11 | 10 | exp31 | |
12 | 11 | a1dd | |
13 | 12 | com4r | |
14 | 13 | com13 | |
15 | 14 | imp | |
16 | 15 | ralrimiv | |
17 | 5 16 | jca | |
18 | pnfxr | |
|
19 | supxr | |
|
20 | 18 19 | mpanl2 | |
21 | 17 20 | syldan | |
22 | 21 | ex | |
23 | rexr | |
|
24 | 23 | ad2antlr | |
25 | ltpnf | |
|
26 | breq2 | |
|
27 | 25 26 | imbitrrid | |
28 | 27 | impcom | |
29 | 28 | adantll | |
30 | xrltso | |
|
31 | 30 | a1i | |
32 | xrsupss | |
|
33 | 32 | ad2antrr | |
34 | 31 33 | suplub | |
35 | 24 29 34 | mp2and | |
36 | 35 | exp31 | |
37 | 36 | com23 | |
38 | 37 | ralrimdv | |
39 | 22 38 | impbid | |