Metamath Proof Explorer


Theorem supxrunb2

Description: The supremum of an unbounded-above set of extended reals is plus infinity. (Contributed by NM, 19-Jan-2006)

Ref Expression
Assertion supxrunb2 A*xyAx<ysupA*<=+∞

Proof

Step Hyp Ref Expression
1 ssel A*zAz*
2 pnfnlt z*¬+∞<z
3 1 2 syl6 A*zA¬+∞<z
4 3 ralrimiv A*zA¬+∞<z
5 4 adantr A*xyAx<yzA¬+∞<z
6 breq1 x=zx<yz<y
7 6 rexbidv x=zyAx<yyAz<y
8 7 rspcva zxyAx<yyAz<y
9 8 adantrr zxyAx<yA*yAz<y
10 9 ancoms xyAx<yA*zyAz<y
11 10 exp31 xyAx<yA*zyAz<y
12 11 a1dd xyAx<yA*z<+∞zyAz<y
13 12 com4r zxyAx<yA*z<+∞yAz<y
14 13 com13 A*xyAx<yzz<+∞yAz<y
15 14 imp A*xyAx<yzz<+∞yAz<y
16 15 ralrimiv A*xyAx<yzz<+∞yAz<y
17 5 16 jca A*xyAx<yzA¬+∞<zzz<+∞yAz<y
18 pnfxr +∞*
19 supxr A*+∞*zA¬+∞<zzz<+∞yAz<ysupA*<=+∞
20 18 19 mpanl2 A*zA¬+∞<zzz<+∞yAz<ysupA*<=+∞
21 17 20 syldan A*xyAx<ysupA*<=+∞
22 21 ex A*xyAx<ysupA*<=+∞
23 rexr xx*
24 23 ad2antlr A*xsupA*<=+∞x*
25 ltpnf xx<+∞
26 breq2 supA*<=+∞x<supA*<x<+∞
27 25 26 imbitrrid supA*<=+∞xx<supA*<
28 27 impcom xsupA*<=+∞x<supA*<
29 28 adantll A*xsupA*<=+∞x<supA*<
30 xrltso <Or*
31 30 a1i A*xsupA*<=+∞<Or*
32 xrsupss A*z*wA¬z<ww*w<zyAw<y
33 32 ad2antrr A*xsupA*<=+∞z*wA¬z<ww*w<zyAw<y
34 31 33 suplub A*xsupA*<=+∞x*x<supA*<yAx<y
35 24 29 34 mp2and A*xsupA*<=+∞yAx<y
36 35 exp31 A*xsupA*<=+∞yAx<y
37 36 com23 A*supA*<=+∞xyAx<y
38 37 ralrimdv A*supA*<=+∞xyAx<y
39 22 38 impbid A*xyAx<ysupA*<=+∞