Metamath Proof Explorer


Theorem supxrbnd1

Description: The supremum of a bounded-above set of extended reals is less than infinity. (Contributed by NM, 30-Jan-2006)

Ref Expression
Assertion supxrbnd1 A*xyAy<xsupA*<<+∞

Proof

Step Hyp Ref Expression
1 ralnex x¬yAy<x¬xyAy<x
2 rexr xx*
3 ssel2 A*yAy*
4 xrlenlt x*y*xy¬y<x
5 2 3 4 syl2anr A*yAxxy¬y<x
6 5 an32s A*xyAxy¬y<x
7 6 rexbidva A*xyAxyyA¬y<x
8 rexnal yA¬y<x¬yAy<x
9 7 8 bitr2di A*x¬yAy<xyAxy
10 9 ralbidva A*x¬yAy<xxyAxy
11 1 10 bitr3id A*¬xyAy<xxyAxy
12 supxrunb1 A*xyAxysupA*<=+∞
13 supxrcl A*supA*<*
14 nltpnft supA*<*supA*<=+∞¬supA*<<+∞
15 13 14 syl A*supA*<=+∞¬supA*<<+∞
16 11 12 15 3bitrd A*¬xyAy<x¬supA*<<+∞
17 16 con4bid A*xyAy<xsupA*<<+∞