Step |
Hyp |
Ref |
Expression |
1 |
|
sge0gerp.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
2 |
|
sge0gerp.f |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) ) |
3 |
|
sge0gerp.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
4 |
|
sge0gerp.z |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑧 ∈ ( 𝒫 𝑋 ∩ Fin ) 𝐴 ≤ ( ( Σ^ ‘ ( 𝐹 ↾ 𝑧 ) ) +𝑒 𝑥 ) ) |
5 |
|
nfv |
⊢ Ⅎ 𝑥 𝜑 |
6 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → 𝑧 ∈ ( 𝒫 𝑋 ∩ Fin ) ) |
7 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → 𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) ) |
8 |
|
elinel1 |
⊢ ( 𝑧 ∈ ( 𝒫 𝑋 ∩ Fin ) → 𝑧 ∈ 𝒫 𝑋 ) |
9 |
|
elpwi |
⊢ ( 𝑧 ∈ 𝒫 𝑋 → 𝑧 ⊆ 𝑋 ) |
10 |
8 9
|
syl |
⊢ ( 𝑧 ∈ ( 𝒫 𝑋 ∩ Fin ) → 𝑧 ⊆ 𝑋 ) |
11 |
10
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → 𝑧 ⊆ 𝑋 ) |
12 |
7 11
|
fssresd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( 𝐹 ↾ 𝑧 ) : 𝑧 ⟶ ( 0 [,] +∞ ) ) |
13 |
6 12
|
sge0xrcl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( Σ^ ‘ ( 𝐹 ↾ 𝑧 ) ) ∈ ℝ* ) |
14 |
13
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑧 ∈ ( 𝒫 𝑋 ∩ Fin ) ( Σ^ ‘ ( 𝐹 ↾ 𝑧 ) ) ∈ ℝ* ) |
15 |
|
eqid |
⊢ ( 𝑧 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹 ↾ 𝑧 ) ) ) = ( 𝑧 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹 ↾ 𝑧 ) ) ) |
16 |
15
|
rnmptss |
⊢ ( ∀ 𝑧 ∈ ( 𝒫 𝑋 ∩ Fin ) ( Σ^ ‘ ( 𝐹 ↾ 𝑧 ) ) ∈ ℝ* → ran ( 𝑧 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹 ↾ 𝑧 ) ) ) ⊆ ℝ* ) |
17 |
14 16
|
syl |
⊢ ( 𝜑 → ran ( 𝑧 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹 ↾ 𝑧 ) ) ) ⊆ ℝ* ) |
18 |
|
nfv |
⊢ Ⅎ 𝑧 ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) |
19 |
|
nfmpt1 |
⊢ Ⅎ 𝑧 ( 𝑧 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹 ↾ 𝑧 ) ) ) |
20 |
19
|
nfrn |
⊢ Ⅎ 𝑧 ran ( 𝑧 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹 ↾ 𝑧 ) ) ) |
21 |
|
nfv |
⊢ Ⅎ 𝑧 𝐴 ≤ ( 𝑦 +𝑒 𝑥 ) |
22 |
20 21
|
nfrex |
⊢ Ⅎ 𝑧 ∃ 𝑦 ∈ ran ( 𝑧 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹 ↾ 𝑧 ) ) ) 𝐴 ≤ ( 𝑦 +𝑒 𝑥 ) |
23 |
|
id |
⊢ ( 𝑧 ∈ ( 𝒫 𝑋 ∩ Fin ) → 𝑧 ∈ ( 𝒫 𝑋 ∩ Fin ) ) |
24 |
|
fvexd |
⊢ ( 𝑧 ∈ ( 𝒫 𝑋 ∩ Fin ) → ( Σ^ ‘ ( 𝐹 ↾ 𝑧 ) ) ∈ V ) |
25 |
15
|
elrnmpt1 |
⊢ ( ( 𝑧 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ ( Σ^ ‘ ( 𝐹 ↾ 𝑧 ) ) ∈ V ) → ( Σ^ ‘ ( 𝐹 ↾ 𝑧 ) ) ∈ ran ( 𝑧 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹 ↾ 𝑧 ) ) ) ) |
26 |
23 24 25
|
syl2anc |
⊢ ( 𝑧 ∈ ( 𝒫 𝑋 ∩ Fin ) → ( Σ^ ‘ ( 𝐹 ↾ 𝑧 ) ) ∈ ran ( 𝑧 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹 ↾ 𝑧 ) ) ) ) |
27 |
26
|
3ad2ant2 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑧 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ 𝐴 ≤ ( ( Σ^ ‘ ( 𝐹 ↾ 𝑧 ) ) +𝑒 𝑥 ) ) → ( Σ^ ‘ ( 𝐹 ↾ 𝑧 ) ) ∈ ran ( 𝑧 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹 ↾ 𝑧 ) ) ) ) |
28 |
|
simp3 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑧 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ 𝐴 ≤ ( ( Σ^ ‘ ( 𝐹 ↾ 𝑧 ) ) +𝑒 𝑥 ) ) → 𝐴 ≤ ( ( Σ^ ‘ ( 𝐹 ↾ 𝑧 ) ) +𝑒 𝑥 ) ) |
29 |
|
nfv |
⊢ Ⅎ 𝑦 𝐴 ≤ ( ( Σ^ ‘ ( 𝐹 ↾ 𝑧 ) ) +𝑒 𝑥 ) |
30 |
|
oveq1 |
⊢ ( 𝑦 = ( Σ^ ‘ ( 𝐹 ↾ 𝑧 ) ) → ( 𝑦 +𝑒 𝑥 ) = ( ( Σ^ ‘ ( 𝐹 ↾ 𝑧 ) ) +𝑒 𝑥 ) ) |
31 |
30
|
breq2d |
⊢ ( 𝑦 = ( Σ^ ‘ ( 𝐹 ↾ 𝑧 ) ) → ( 𝐴 ≤ ( 𝑦 +𝑒 𝑥 ) ↔ 𝐴 ≤ ( ( Σ^ ‘ ( 𝐹 ↾ 𝑧 ) ) +𝑒 𝑥 ) ) ) |
32 |
29 31
|
rspce |
⊢ ( ( ( Σ^ ‘ ( 𝐹 ↾ 𝑧 ) ) ∈ ran ( 𝑧 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹 ↾ 𝑧 ) ) ) ∧ 𝐴 ≤ ( ( Σ^ ‘ ( 𝐹 ↾ 𝑧 ) ) +𝑒 𝑥 ) ) → ∃ 𝑦 ∈ ran ( 𝑧 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹 ↾ 𝑧 ) ) ) 𝐴 ≤ ( 𝑦 +𝑒 𝑥 ) ) |
33 |
27 28 32
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑧 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ 𝐴 ≤ ( ( Σ^ ‘ ( 𝐹 ↾ 𝑧 ) ) +𝑒 𝑥 ) ) → ∃ 𝑦 ∈ ran ( 𝑧 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹 ↾ 𝑧 ) ) ) 𝐴 ≤ ( 𝑦 +𝑒 𝑥 ) ) |
34 |
33
|
3exp |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( 𝑧 ∈ ( 𝒫 𝑋 ∩ Fin ) → ( 𝐴 ≤ ( ( Σ^ ‘ ( 𝐹 ↾ 𝑧 ) ) +𝑒 𝑥 ) → ∃ 𝑦 ∈ ran ( 𝑧 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹 ↾ 𝑧 ) ) ) 𝐴 ≤ ( 𝑦 +𝑒 𝑥 ) ) ) ) |
35 |
18 22 34
|
rexlimd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( ∃ 𝑧 ∈ ( 𝒫 𝑋 ∩ Fin ) 𝐴 ≤ ( ( Σ^ ‘ ( 𝐹 ↾ 𝑧 ) ) +𝑒 𝑥 ) → ∃ 𝑦 ∈ ran ( 𝑧 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹 ↾ 𝑧 ) ) ) 𝐴 ≤ ( 𝑦 +𝑒 𝑥 ) ) ) |
36 |
4 35
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑦 ∈ ran ( 𝑧 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹 ↾ 𝑧 ) ) ) 𝐴 ≤ ( 𝑦 +𝑒 𝑥 ) ) |
37 |
5 17 3 36
|
supxrge |
⊢ ( 𝜑 → 𝐴 ≤ sup ( ran ( 𝑧 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹 ↾ 𝑧 ) ) ) , ℝ* , < ) ) |
38 |
1 2
|
sge0sup |
⊢ ( 𝜑 → ( Σ^ ‘ 𝐹 ) = sup ( ran ( 𝑧 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹 ↾ 𝑧 ) ) ) , ℝ* , < ) ) |
39 |
38
|
eqcomd |
⊢ ( 𝜑 → sup ( ran ( 𝑧 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹 ↾ 𝑧 ) ) ) , ℝ* , < ) = ( Σ^ ‘ 𝐹 ) ) |
40 |
37 39
|
breqtrd |
⊢ ( 𝜑 → 𝐴 ≤ ( Σ^ ‘ 𝐹 ) ) |