Metamath Proof Explorer


Theorem supxrge

Description: If an extended real number can be approximated from below by members of a set, then it is less than or equal to the supremum of the set. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses supxrge.xph xφ
supxrge.a φA*
supxrge.b φB*
supxrge.y φx+yABy+𝑒x
Assertion supxrge φBsupA*<

Proof

Step Hyp Ref Expression
1 supxrge.xph xφ
2 supxrge.a φA*
3 supxrge.b φB*
4 supxrge.y φx+yABy+𝑒x
5 pnfge B*B+∞
6 3 5 syl φB+∞
7 6 adantr φ+∞AB+∞
8 2 adantr φ+∞AA*
9 simpr φ+∞A+∞A
10 supxrpnf A*+∞AsupA*<=+∞
11 8 9 10 syl2anc φ+∞AsupA*<=+∞
12 11 eqcomd φ+∞A+∞=supA*<
13 7 12 breqtrd φ+∞ABsupA*<
14 simpr φB=−∞B=−∞
15 supxrcl A*supA*<*
16 2 15 syl φsupA*<*
17 mnfle supA*<*−∞supA*<
18 16 17 syl φ−∞supA*<
19 18 adantr φB=−∞−∞supA*<
20 14 19 eqbrtrd φB=−∞BsupA*<
21 20 adantlr φ¬+∞AB=−∞BsupA*<
22 simpl φ¬+∞A¬B=−∞φ¬+∞A
23 neqne ¬B=−∞B−∞
24 23 adantl φ¬+∞A¬B=−∞B−∞
25 nfv wφ¬+∞AB−∞
26 2 adantr φ¬+∞AA*
27 26 adantr φ¬+∞AB−∞A*
28 3 adantr φ¬+∞AB*
29 28 adantr φ¬+∞AB−∞B*
30 simpl φw+φ
31 rphalfcl w+w2+
32 31 adantl φw+w2+
33 ovex w2V
34 nfcv _xw2
35 nfv xw2+
36 1 35 nfan xφw2+
37 nfv xyABy+𝑒w2
38 36 37 nfim xφw2+yABy+𝑒w2
39 eleq1 x=w2x+w2+
40 39 anbi2d x=w2φx+φw2+
41 oveq2 x=w2y+𝑒x=y+𝑒w2
42 41 breq2d x=w2By+𝑒xBy+𝑒w2
43 42 rexbidv x=w2yABy+𝑒xyABy+𝑒w2
44 40 43 imbi12d x=w2φx+yABy+𝑒xφw2+yABy+𝑒w2
45 34 38 44 4 vtoclgf w2Vφw2+yABy+𝑒w2
46 33 45 ax-mp φw2+yABy+𝑒w2
47 30 32 46 syl2anc φw+yABy+𝑒w2
48 47 adantlr φ¬+∞Aw+yABy+𝑒w2
49 48 adantlr φ¬+∞AB−∞w+yABy+𝑒w2
50 nfv yφ¬+∞AB−∞w+
51 neneq B−∞¬B=−∞
52 51 adantl φB−∞¬B=−∞
53 3 adantr φB−∞B*
54 ngtmnft B*B=−∞¬−∞<B
55 53 54 syl φB−∞B=−∞¬−∞<B
56 52 55 mtbid φB−∞¬¬−∞<B
57 56 notnotrd φB−∞−∞<B
58 57 ad4ant13 φ¬+∞AB−∞w+−∞<B
59 58 3ad2ant1 φ¬+∞AB−∞w+yABy+𝑒w2−∞<B
60 29 adantr φ¬+∞AB−∞w+B*
61 60 3ad2ant1 φ¬+∞AB−∞w+yABy+𝑒w2B*
62 61 adantr φ¬+∞AB−∞w+yABy+𝑒w2¬−∞<yB*
63 mnfxr −∞*
64 63 a1i φ¬+∞AB−∞w+yABy+𝑒w2¬−∞<y−∞*
65 simpl3 φ¬+∞AB−∞w+yABy+𝑒w2¬−∞<yBy+𝑒w2
66 simpr φyA¬−∞<y¬−∞<y
67 2 sselda φyAy*
68 67 adantr φyA¬−∞<yy*
69 ngtmnft y*y=−∞¬−∞<y
70 68 69 syl φyA¬−∞<yy=−∞¬−∞<y
71 66 70 mpbird φyA¬−∞<yy=−∞
72 71 oveq1d φyA¬−∞<yy+𝑒w2=−∞+𝑒w2
73 72 adantllr φw+yA¬−∞<yy+𝑒w2=−∞+𝑒w2
74 31 rpxrd w+w2*
75 31 rpred w+w2
76 renepnf w2w2+∞
77 75 76 syl w+w2+∞
78 xaddmnf2 w2*w2+∞−∞+𝑒w2=−∞
79 74 77 78 syl2anc w+−∞+𝑒w2=−∞
80 79 adantl φw+−∞+𝑒w2=−∞
81 80 ad2antrr φw+yA¬−∞<y−∞+𝑒w2=−∞
82 73 81 eqtrd φw+yA¬−∞<yy+𝑒w2=−∞
83 82 adantl3r φ¬+∞Aw+yA¬−∞<yy+𝑒w2=−∞
84 83 adantl3r φ¬+∞AB−∞w+yA¬−∞<yy+𝑒w2=−∞
85 84 3adantl3 φ¬+∞AB−∞w+yABy+𝑒w2¬−∞<yy+𝑒w2=−∞
86 65 85 breqtrd φ¬+∞AB−∞w+yABy+𝑒w2¬−∞<yB−∞
87 mnfle B*−∞B
88 3 87 syl φ−∞B
89 88 adantr φ¬+∞A−∞B
90 89 ad3antrrr φ¬+∞AB−∞w+¬−∞<y−∞B
91 90 3ad2antl1 φ¬+∞AB−∞w+yABy+𝑒w2¬−∞<y−∞B
92 62 64 86 91 xrletrid φ¬+∞AB−∞w+yABy+𝑒w2¬−∞<yB=−∞
93 simpllr φ¬+∞AB−∞w+¬−∞<yB−∞
94 93 3ad2antl1 φ¬+∞AB−∞w+yABy+𝑒w2¬−∞<yB−∞
95 94 neneqd φ¬+∞AB−∞w+yABy+𝑒w2¬−∞<y¬B=−∞
96 92 95 condan φ¬+∞AB−∞w+yABy+𝑒w2−∞<y
97 simpr φyA¬y<+∞¬y<+∞
98 67 adantr φyA¬y<+∞y*
99 nltpnft y*y=+∞¬y<+∞
100 98 99 syl φyA¬y<+∞y=+∞¬y<+∞
101 97 100 mpbird φyA¬y<+∞y=+∞
102 101 eqcomd φyA¬y<+∞+∞=y
103 simpr φyAyA
104 103 adantr φyA¬y<+∞yA
105 102 104 eqeltrd φyA¬y<+∞+∞A
106 105 3adantl2 φ¬+∞AyA¬y<+∞+∞A
107 simpl2 φ¬+∞AyA¬y<+∞¬+∞A
108 106 107 condan φ¬+∞AyAy<+∞
109 108 ad5ant125 φ¬+∞AB−∞w+yAy<+∞
110 109 3adant3 φ¬+∞AB−∞w+yABy+𝑒w2y<+∞
111 96 110 jca φ¬+∞AB−∞w+yABy+𝑒w2−∞<yy<+∞
112 67 ad5ant15 φ¬+∞AB−∞w+yAy*
113 112 3adant3 φ¬+∞AB−∞w+yABy+𝑒w2y*
114 xrrebnd y*y−∞<yy<+∞
115 113 114 syl φ¬+∞AB−∞w+yABy+𝑒w2y−∞<yy<+∞
116 111 115 mpbird φ¬+∞AB−∞w+yABy+𝑒w2y
117 75 adantl φ¬+∞AB−∞w+w2
118 117 3ad2ant1 φ¬+∞AB−∞w+yABy+𝑒w2w2
119 rexadd yw2y+𝑒w2=y+w2
120 116 118 119 syl2anc φ¬+∞AB−∞w+yABy+𝑒w2y+𝑒w2=y+w2
121 116 118 readdcld φ¬+∞AB−∞w+yABy+𝑒w2y+w2
122 120 121 eqeltrd φ¬+∞AB−∞w+yABy+𝑒w2y+𝑒w2
123 122 rexrd φ¬+∞AB−∞w+yABy+𝑒w2y+𝑒w2*
124 pnfxr +∞*
125 124 a1i φ¬+∞AB−∞w+yABy+𝑒w2+∞*
126 simp3 φ¬+∞AB−∞w+yABy+𝑒w2By+𝑒w2
127 122 ltpnfd φ¬+∞AB−∞w+yABy+𝑒w2y+𝑒w2<+∞
128 61 123 125 126 127 xrlelttrd φ¬+∞AB−∞w+yABy+𝑒w2B<+∞
129 59 128 jca φ¬+∞AB−∞w+yABy+𝑒w2−∞<BB<+∞
130 xrrebnd B*B−∞<BB<+∞
131 61 130 syl φ¬+∞AB−∞w+yABy+𝑒w2B−∞<BB<+∞
132 129 131 mpbird φ¬+∞AB−∞w+yABy+𝑒w2B
133 rpre w+w
134 133 adantl φ¬+∞AB−∞w+w
135 134 3ad2ant1 φ¬+∞AB−∞w+yABy+𝑒w2w
136 rexadd ywy+𝑒w=y+w
137 116 135 136 syl2anc φ¬+∞AB−∞w+yABy+𝑒w2y+𝑒w=y+w
138 116 135 readdcld φ¬+∞AB−∞w+yABy+𝑒w2y+w
139 137 138 eqeltrd φ¬+∞AB−∞w+yABy+𝑒w2y+𝑒w
140 rphalflt w+w2<w
141 140 adantl φ¬+∞AB−∞w+w2<w
142 141 3ad2ant1 φ¬+∞AB−∞w+yABy+𝑒w2w2<w
143 118 135 116 142 ltadd2dd φ¬+∞AB−∞w+yABy+𝑒w2y+w2<y+w
144 120 137 breq12d φ¬+∞AB−∞w+yABy+𝑒w2y+𝑒w2<y+𝑒wy+w2<y+w
145 143 144 mpbird φ¬+∞AB−∞w+yABy+𝑒w2y+𝑒w2<y+𝑒w
146 132 122 139 126 145 lelttrd φ¬+∞AB−∞w+yABy+𝑒w2B<y+𝑒w
147 146 3exp φ¬+∞AB−∞w+yABy+𝑒w2B<y+𝑒w
148 50 147 reximdai φ¬+∞AB−∞w+yABy+𝑒w2yAB<y+𝑒w
149 49 148 mpd φ¬+∞AB−∞w+yAB<y+𝑒w
150 25 27 29 149 supxrgelem φ¬+∞AB−∞BsupA*<
151 22 24 150 syl2anc φ¬+∞A¬B=−∞BsupA*<
152 21 151 pm2.61dan φ¬+∞ABsupA*<
153 13 152 pm2.61dan φBsupA*<