Step |
Hyp |
Ref |
Expression |
1 |
|
sge0pr.a |
|- ( ph -> A e. V ) |
2 |
|
sge0pr.b |
|- ( ph -> B e. W ) |
3 |
|
sge0pr.d |
|- ( ph -> D e. ( 0 [,] +oo ) ) |
4 |
|
sge0pr.e |
|- ( ph -> E e. ( 0 [,] +oo ) ) |
5 |
|
sge0pr.cd |
|- ( k = A -> C = D ) |
6 |
|
sge0pr.ce |
|- ( k = B -> C = E ) |
7 |
|
sge0pr.ab |
|- ( ph -> A =/= B ) |
8 |
|
iccssxr |
|- ( 0 [,] +oo ) C_ RR* |
9 |
8 4
|
sselid |
|- ( ph -> E e. RR* ) |
10 |
|
mnfxr |
|- -oo e. RR* |
11 |
10
|
a1i |
|- ( ph -> -oo e. RR* ) |
12 |
|
0xr |
|- 0 e. RR* |
13 |
12
|
a1i |
|- ( ph -> 0 e. RR* ) |
14 |
|
mnflt0 |
|- -oo < 0 |
15 |
14
|
a1i |
|- ( ph -> -oo < 0 ) |
16 |
|
pnfxr |
|- +oo e. RR* |
17 |
16
|
a1i |
|- ( ph -> +oo e. RR* ) |
18 |
|
iccgelb |
|- ( ( 0 e. RR* /\ +oo e. RR* /\ E e. ( 0 [,] +oo ) ) -> 0 <_ E ) |
19 |
13 17 4 18
|
syl3anc |
|- ( ph -> 0 <_ E ) |
20 |
11 13 9 15 19
|
xrltletrd |
|- ( ph -> -oo < E ) |
21 |
11 9 20
|
xrgtned |
|- ( ph -> E =/= -oo ) |
22 |
|
xaddpnf2 |
|- ( ( E e. RR* /\ E =/= -oo ) -> ( +oo +e E ) = +oo ) |
23 |
9 21 22
|
syl2anc |
|- ( ph -> ( +oo +e E ) = +oo ) |
24 |
23
|
eqcomd |
|- ( ph -> +oo = ( +oo +e E ) ) |
25 |
24
|
adantr |
|- ( ( ph /\ D = +oo ) -> +oo = ( +oo +e E ) ) |
26 |
|
prex |
|- { A , B } e. _V |
27 |
26
|
a1i |
|- ( ( ph /\ D = +oo ) -> { A , B } e. _V ) |
28 |
5
|
adantl |
|- ( ( ph /\ k = A ) -> C = D ) |
29 |
3
|
adantr |
|- ( ( ph /\ k = A ) -> D e. ( 0 [,] +oo ) ) |
30 |
28 29
|
eqeltrd |
|- ( ( ph /\ k = A ) -> C e. ( 0 [,] +oo ) ) |
31 |
30
|
adantlr |
|- ( ( ( ph /\ k e. { A , B } ) /\ k = A ) -> C e. ( 0 [,] +oo ) ) |
32 |
|
simpll |
|- ( ( ( ph /\ k e. { A , B } ) /\ -. k = A ) -> ph ) |
33 |
|
simpl |
|- ( ( k e. { A , B } /\ -. k = A ) -> k e. { A , B } ) |
34 |
|
neqne |
|- ( -. k = A -> k =/= A ) |
35 |
34
|
adantl |
|- ( ( k e. { A , B } /\ -. k = A ) -> k =/= A ) |
36 |
|
elprn1 |
|- ( ( k e. { A , B } /\ k =/= A ) -> k = B ) |
37 |
33 35 36
|
syl2anc |
|- ( ( k e. { A , B } /\ -. k = A ) -> k = B ) |
38 |
37
|
adantll |
|- ( ( ( ph /\ k e. { A , B } ) /\ -. k = A ) -> k = B ) |
39 |
6
|
adantl |
|- ( ( ph /\ k = B ) -> C = E ) |
40 |
4
|
adantr |
|- ( ( ph /\ k = B ) -> E e. ( 0 [,] +oo ) ) |
41 |
39 40
|
eqeltrd |
|- ( ( ph /\ k = B ) -> C e. ( 0 [,] +oo ) ) |
42 |
32 38 41
|
syl2anc |
|- ( ( ( ph /\ k e. { A , B } ) /\ -. k = A ) -> C e. ( 0 [,] +oo ) ) |
43 |
31 42
|
pm2.61dan |
|- ( ( ph /\ k e. { A , B } ) -> C e. ( 0 [,] +oo ) ) |
44 |
|
eqid |
|- ( k e. { A , B } |-> C ) = ( k e. { A , B } |-> C ) |
45 |
43 44
|
fmptd |
|- ( ph -> ( k e. { A , B } |-> C ) : { A , B } --> ( 0 [,] +oo ) ) |
46 |
45
|
adantr |
|- ( ( ph /\ D = +oo ) -> ( k e. { A , B } |-> C ) : { A , B } --> ( 0 [,] +oo ) ) |
47 |
|
id |
|- ( D = +oo -> D = +oo ) |
48 |
47
|
eqcomd |
|- ( D = +oo -> +oo = D ) |
49 |
48
|
adantl |
|- ( ( ph /\ D = +oo ) -> +oo = D ) |
50 |
|
prid1g |
|- ( D e. ( 0 [,] +oo ) -> D e. { D , E } ) |
51 |
3 50
|
syl |
|- ( ph -> D e. { D , E } ) |
52 |
1 2 44 5 6
|
rnmptpr |
|- ( ph -> ran ( k e. { A , B } |-> C ) = { D , E } ) |
53 |
52
|
eqcomd |
|- ( ph -> { D , E } = ran ( k e. { A , B } |-> C ) ) |
54 |
51 53
|
eleqtrd |
|- ( ph -> D e. ran ( k e. { A , B } |-> C ) ) |
55 |
54
|
adantr |
|- ( ( ph /\ D = +oo ) -> D e. ran ( k e. { A , B } |-> C ) ) |
56 |
49 55
|
eqeltrd |
|- ( ( ph /\ D = +oo ) -> +oo e. ran ( k e. { A , B } |-> C ) ) |
57 |
27 46 56
|
sge0pnfval |
|- ( ( ph /\ D = +oo ) -> ( sum^ ` ( k e. { A , B } |-> C ) ) = +oo ) |
58 |
|
oveq1 |
|- ( D = +oo -> ( D +e E ) = ( +oo +e E ) ) |
59 |
58
|
adantl |
|- ( ( ph /\ D = +oo ) -> ( D +e E ) = ( +oo +e E ) ) |
60 |
25 57 59
|
3eqtr4d |
|- ( ( ph /\ D = +oo ) -> ( sum^ ` ( k e. { A , B } |-> C ) ) = ( D +e E ) ) |
61 |
8 3
|
sselid |
|- ( ph -> D e. RR* ) |
62 |
|
iccgelb |
|- ( ( 0 e. RR* /\ +oo e. RR* /\ D e. ( 0 [,] +oo ) ) -> 0 <_ D ) |
63 |
13 17 3 62
|
syl3anc |
|- ( ph -> 0 <_ D ) |
64 |
11 13 61 15 63
|
xrltletrd |
|- ( ph -> -oo < D ) |
65 |
11 61 64
|
xrgtned |
|- ( ph -> D =/= -oo ) |
66 |
|
xaddpnf1 |
|- ( ( D e. RR* /\ D =/= -oo ) -> ( D +e +oo ) = +oo ) |
67 |
61 65 66
|
syl2anc |
|- ( ph -> ( D +e +oo ) = +oo ) |
68 |
67
|
eqcomd |
|- ( ph -> +oo = ( D +e +oo ) ) |
69 |
68
|
adantr |
|- ( ( ph /\ E = +oo ) -> +oo = ( D +e +oo ) ) |
70 |
26
|
a1i |
|- ( ( ph /\ E = +oo ) -> { A , B } e. _V ) |
71 |
45
|
adantr |
|- ( ( ph /\ E = +oo ) -> ( k e. { A , B } |-> C ) : { A , B } --> ( 0 [,] +oo ) ) |
72 |
|
id |
|- ( E = +oo -> E = +oo ) |
73 |
72
|
eqcomd |
|- ( E = +oo -> +oo = E ) |
74 |
73
|
adantl |
|- ( ( ph /\ E = +oo ) -> +oo = E ) |
75 |
|
prid2g |
|- ( E e. ( 0 [,] +oo ) -> E e. { D , E } ) |
76 |
4 75
|
syl |
|- ( ph -> E e. { D , E } ) |
77 |
76 53
|
eleqtrd |
|- ( ph -> E e. ran ( k e. { A , B } |-> C ) ) |
78 |
77
|
adantr |
|- ( ( ph /\ E = +oo ) -> E e. ran ( k e. { A , B } |-> C ) ) |
79 |
74 78
|
eqeltrd |
|- ( ( ph /\ E = +oo ) -> +oo e. ran ( k e. { A , B } |-> C ) ) |
80 |
70 71 79
|
sge0pnfval |
|- ( ( ph /\ E = +oo ) -> ( sum^ ` ( k e. { A , B } |-> C ) ) = +oo ) |
81 |
|
oveq2 |
|- ( E = +oo -> ( D +e E ) = ( D +e +oo ) ) |
82 |
81
|
adantl |
|- ( ( ph /\ E = +oo ) -> ( D +e E ) = ( D +e +oo ) ) |
83 |
69 80 82
|
3eqtr4d |
|- ( ( ph /\ E = +oo ) -> ( sum^ ` ( k e. { A , B } |-> C ) ) = ( D +e E ) ) |
84 |
83
|
adantlr |
|- ( ( ( ph /\ -. D = +oo ) /\ E = +oo ) -> ( sum^ ` ( k e. { A , B } |-> C ) ) = ( D +e E ) ) |
85 |
|
rge0ssre |
|- ( 0 [,) +oo ) C_ RR |
86 |
|
ax-resscn |
|- RR C_ CC |
87 |
85 86
|
sstri |
|- ( 0 [,) +oo ) C_ CC |
88 |
12
|
a1i |
|- ( ( ph /\ -. D = +oo ) -> 0 e. RR* ) |
89 |
16
|
a1i |
|- ( ( ph /\ -. D = +oo ) -> +oo e. RR* ) |
90 |
61
|
adantr |
|- ( ( ph /\ -. D = +oo ) -> D e. RR* ) |
91 |
63
|
adantr |
|- ( ( ph /\ -. D = +oo ) -> 0 <_ D ) |
92 |
|
pnfge |
|- ( D e. RR* -> D <_ +oo ) |
93 |
61 92
|
syl |
|- ( ph -> D <_ +oo ) |
94 |
93
|
adantr |
|- ( ( ph /\ -. D = +oo ) -> D <_ +oo ) |
95 |
47
|
necon3bi |
|- ( -. D = +oo -> D =/= +oo ) |
96 |
95
|
adantl |
|- ( ( ph /\ -. D = +oo ) -> D =/= +oo ) |
97 |
90 89 94 96
|
xrleneltd |
|- ( ( ph /\ -. D = +oo ) -> D < +oo ) |
98 |
88 89 90 91 97
|
elicod |
|- ( ( ph /\ -. D = +oo ) -> D e. ( 0 [,) +oo ) ) |
99 |
98
|
adantr |
|- ( ( ( ph /\ -. D = +oo ) /\ -. E = +oo ) -> D e. ( 0 [,) +oo ) ) |
100 |
87 99
|
sselid |
|- ( ( ( ph /\ -. D = +oo ) /\ -. E = +oo ) -> D e. CC ) |
101 |
12
|
a1i |
|- ( ( ph /\ -. E = +oo ) -> 0 e. RR* ) |
102 |
16
|
a1i |
|- ( ( ph /\ -. E = +oo ) -> +oo e. RR* ) |
103 |
9
|
adantr |
|- ( ( ph /\ -. E = +oo ) -> E e. RR* ) |
104 |
19
|
adantr |
|- ( ( ph /\ -. E = +oo ) -> 0 <_ E ) |
105 |
|
pnfge |
|- ( E e. RR* -> E <_ +oo ) |
106 |
9 105
|
syl |
|- ( ph -> E <_ +oo ) |
107 |
106
|
adantr |
|- ( ( ph /\ -. E = +oo ) -> E <_ +oo ) |
108 |
72
|
necon3bi |
|- ( -. E = +oo -> E =/= +oo ) |
109 |
108
|
adantl |
|- ( ( ph /\ -. E = +oo ) -> E =/= +oo ) |
110 |
103 102 107 109
|
xrleneltd |
|- ( ( ph /\ -. E = +oo ) -> E < +oo ) |
111 |
101 102 103 104 110
|
elicod |
|- ( ( ph /\ -. E = +oo ) -> E e. ( 0 [,) +oo ) ) |
112 |
87 111
|
sselid |
|- ( ( ph /\ -. E = +oo ) -> E e. CC ) |
113 |
112
|
adantlr |
|- ( ( ( ph /\ -. D = +oo ) /\ -. E = +oo ) -> E e. CC ) |
114 |
100 113
|
jca |
|- ( ( ( ph /\ -. D = +oo ) /\ -. E = +oo ) -> ( D e. CC /\ E e. CC ) ) |
115 |
1 2
|
jca |
|- ( ph -> ( A e. V /\ B e. W ) ) |
116 |
115
|
ad2antrr |
|- ( ( ( ph /\ -. D = +oo ) /\ -. E = +oo ) -> ( A e. V /\ B e. W ) ) |
117 |
7
|
ad2antrr |
|- ( ( ( ph /\ -. D = +oo ) /\ -. E = +oo ) -> A =/= B ) |
118 |
5 6 114 116 117
|
sumpr |
|- ( ( ( ph /\ -. D = +oo ) /\ -. E = +oo ) -> sum_ k e. { A , B } C = ( D + E ) ) |
119 |
|
prfi |
|- { A , B } e. Fin |
120 |
119
|
a1i |
|- ( ( ( ph /\ -. D = +oo ) /\ -. E = +oo ) -> { A , B } e. Fin ) |
121 |
5
|
adantl |
|- ( ( ( ph /\ -. D = +oo ) /\ k = A ) -> C = D ) |
122 |
98
|
adantr |
|- ( ( ( ph /\ -. D = +oo ) /\ k = A ) -> D e. ( 0 [,) +oo ) ) |
123 |
121 122
|
eqeltrd |
|- ( ( ( ph /\ -. D = +oo ) /\ k = A ) -> C e. ( 0 [,) +oo ) ) |
124 |
123
|
ad4ant14 |
|- ( ( ( ( ( ph /\ -. D = +oo ) /\ -. E = +oo ) /\ k e. { A , B } ) /\ k = A ) -> C e. ( 0 [,) +oo ) ) |
125 |
|
simp-4l |
|- ( ( ( ( ( ph /\ -. D = +oo ) /\ -. E = +oo ) /\ k e. { A , B } ) /\ -. k = A ) -> ph ) |
126 |
|
simpllr |
|- ( ( ( ( ( ph /\ -. D = +oo ) /\ -. E = +oo ) /\ k e. { A , B } ) /\ -. k = A ) -> -. E = +oo ) |
127 |
37
|
adantll |
|- ( ( ( ( ( ph /\ -. D = +oo ) /\ -. E = +oo ) /\ k e. { A , B } ) /\ -. k = A ) -> k = B ) |
128 |
39
|
3adant2 |
|- ( ( ph /\ -. E = +oo /\ k = B ) -> C = E ) |
129 |
111
|
3adant3 |
|- ( ( ph /\ -. E = +oo /\ k = B ) -> E e. ( 0 [,) +oo ) ) |
130 |
128 129
|
eqeltrd |
|- ( ( ph /\ -. E = +oo /\ k = B ) -> C e. ( 0 [,) +oo ) ) |
131 |
125 126 127 130
|
syl3anc |
|- ( ( ( ( ( ph /\ -. D = +oo ) /\ -. E = +oo ) /\ k e. { A , B } ) /\ -. k = A ) -> C e. ( 0 [,) +oo ) ) |
132 |
124 131
|
pm2.61dan |
|- ( ( ( ( ph /\ -. D = +oo ) /\ -. E = +oo ) /\ k e. { A , B } ) -> C e. ( 0 [,) +oo ) ) |
133 |
120 132
|
sge0fsummpt |
|- ( ( ( ph /\ -. D = +oo ) /\ -. E = +oo ) -> ( sum^ ` ( k e. { A , B } |-> C ) ) = sum_ k e. { A , B } C ) |
134 |
85 99
|
sselid |
|- ( ( ( ph /\ -. D = +oo ) /\ -. E = +oo ) -> D e. RR ) |
135 |
85 111
|
sselid |
|- ( ( ph /\ -. E = +oo ) -> E e. RR ) |
136 |
135
|
adantlr |
|- ( ( ( ph /\ -. D = +oo ) /\ -. E = +oo ) -> E e. RR ) |
137 |
|
rexadd |
|- ( ( D e. RR /\ E e. RR ) -> ( D +e E ) = ( D + E ) ) |
138 |
134 136 137
|
syl2anc |
|- ( ( ( ph /\ -. D = +oo ) /\ -. E = +oo ) -> ( D +e E ) = ( D + E ) ) |
139 |
118 133 138
|
3eqtr4d |
|- ( ( ( ph /\ -. D = +oo ) /\ -. E = +oo ) -> ( sum^ ` ( k e. { A , B } |-> C ) ) = ( D +e E ) ) |
140 |
84 139
|
pm2.61dan |
|- ( ( ph /\ -. D = +oo ) -> ( sum^ ` ( k e. { A , B } |-> C ) ) = ( D +e E ) ) |
141 |
60 140
|
pm2.61dan |
|- ( ph -> ( sum^ ` ( k e. { A , B } |-> C ) ) = ( D +e E ) ) |