| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rnmptpr.a |
|- ( ph -> A e. V ) |
| 2 |
|
rnmptpr.b |
|- ( ph -> B e. W ) |
| 3 |
|
rnmptpr.f |
|- F = ( x e. { A , B } |-> C ) |
| 4 |
|
rnmptpr.d |
|- ( x = A -> C = D ) |
| 5 |
|
rnmptpr.e |
|- ( x = B -> C = E ) |
| 6 |
4
|
eqeq2d |
|- ( x = A -> ( y = C <-> y = D ) ) |
| 7 |
5
|
eqeq2d |
|- ( x = B -> ( y = C <-> y = E ) ) |
| 8 |
6 7
|
rexprg |
|- ( ( A e. V /\ B e. W ) -> ( E. x e. { A , B } y = C <-> ( y = D \/ y = E ) ) ) |
| 9 |
1 2 8
|
syl2anc |
|- ( ph -> ( E. x e. { A , B } y = C <-> ( y = D \/ y = E ) ) ) |
| 10 |
3
|
elrnmpt |
|- ( y e. _V -> ( y e. ran F <-> E. x e. { A , B } y = C ) ) |
| 11 |
10
|
elv |
|- ( y e. ran F <-> E. x e. { A , B } y = C ) |
| 12 |
|
vex |
|- y e. _V |
| 13 |
12
|
elpr |
|- ( y e. { D , E } <-> ( y = D \/ y = E ) ) |
| 14 |
9 11 13
|
3bitr4g |
|- ( ph -> ( y e. ran F <-> y e. { D , E } ) ) |
| 15 |
14
|
eqrdv |
|- ( ph -> ran F = { D , E } ) |