| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rnmptpr.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 2 |
|
rnmptpr.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) |
| 3 |
|
rnmptpr.f |
⊢ 𝐹 = ( 𝑥 ∈ { 𝐴 , 𝐵 } ↦ 𝐶 ) |
| 4 |
|
rnmptpr.d |
⊢ ( 𝑥 = 𝐴 → 𝐶 = 𝐷 ) |
| 5 |
|
rnmptpr.e |
⊢ ( 𝑥 = 𝐵 → 𝐶 = 𝐸 ) |
| 6 |
4
|
eqeq2d |
⊢ ( 𝑥 = 𝐴 → ( 𝑦 = 𝐶 ↔ 𝑦 = 𝐷 ) ) |
| 7 |
5
|
eqeq2d |
⊢ ( 𝑥 = 𝐵 → ( 𝑦 = 𝐶 ↔ 𝑦 = 𝐸 ) ) |
| 8 |
6 7
|
rexprg |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∃ 𝑥 ∈ { 𝐴 , 𝐵 } 𝑦 = 𝐶 ↔ ( 𝑦 = 𝐷 ∨ 𝑦 = 𝐸 ) ) ) |
| 9 |
1 2 8
|
syl2anc |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ { 𝐴 , 𝐵 } 𝑦 = 𝐶 ↔ ( 𝑦 = 𝐷 ∨ 𝑦 = 𝐸 ) ) ) |
| 10 |
3
|
elrnmpt |
⊢ ( 𝑦 ∈ V → ( 𝑦 ∈ ran 𝐹 ↔ ∃ 𝑥 ∈ { 𝐴 , 𝐵 } 𝑦 = 𝐶 ) ) |
| 11 |
10
|
elv |
⊢ ( 𝑦 ∈ ran 𝐹 ↔ ∃ 𝑥 ∈ { 𝐴 , 𝐵 } 𝑦 = 𝐶 ) |
| 12 |
|
vex |
⊢ 𝑦 ∈ V |
| 13 |
12
|
elpr |
⊢ ( 𝑦 ∈ { 𝐷 , 𝐸 } ↔ ( 𝑦 = 𝐷 ∨ 𝑦 = 𝐸 ) ) |
| 14 |
9 11 13
|
3bitr4g |
⊢ ( 𝜑 → ( 𝑦 ∈ ran 𝐹 ↔ 𝑦 ∈ { 𝐷 , 𝐸 } ) ) |
| 15 |
14
|
eqrdv |
⊢ ( 𝜑 → ran 𝐹 = { 𝐷 , 𝐸 } ) |