Metamath Proof Explorer


Theorem sge0gerpmpt

Description: The arbitrary sum of nonnegative extended reals is greater than or equal to a given extended real number if this number can be approximated from below by finite subsums. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses sge0gerpmpt.xph x φ
sge0gerpmpt.a φ A V
sge0gerpmpt.b φ x A B 0 +∞
sge0gerpmpt.c φ C *
sge0gerpmpt.rp φ y + z 𝒫 A Fin C sum^ x z B + 𝑒 y
Assertion sge0gerpmpt φ C sum^ x A B

Proof

Step Hyp Ref Expression
1 sge0gerpmpt.xph x φ
2 sge0gerpmpt.a φ A V
3 sge0gerpmpt.b φ x A B 0 +∞
4 sge0gerpmpt.c φ C *
5 sge0gerpmpt.rp φ y + z 𝒫 A Fin C sum^ x z B + 𝑒 y
6 eqid x A B = x A B
7 1 3 6 fmptdf φ x A B : A 0 +∞
8 elpwinss z 𝒫 A Fin z A
9 8 resmptd z 𝒫 A Fin x A B z = x z B
10 9 eqcomd z 𝒫 A Fin x z B = x A B z
11 10 fveq2d z 𝒫 A Fin sum^ x z B = sum^ x A B z
12 11 oveq1d z 𝒫 A Fin sum^ x z B + 𝑒 y = sum^ x A B z + 𝑒 y
13 12 breq2d z 𝒫 A Fin C sum^ x z B + 𝑒 y C sum^ x A B z + 𝑒 y
14 13 biimpd z 𝒫 A Fin C sum^ x z B + 𝑒 y C sum^ x A B z + 𝑒 y
15 14 adantl φ y + z 𝒫 A Fin C sum^ x z B + 𝑒 y C sum^ x A B z + 𝑒 y
16 15 reximdva φ y + z 𝒫 A Fin C sum^ x z B + 𝑒 y z 𝒫 A Fin C sum^ x A B z + 𝑒 y
17 5 16 mpd φ y + z 𝒫 A Fin C sum^ x A B z + 𝑒 y
18 2 7 4 17 sge0gerp φ C sum^ x A B