| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sge0prle.a |  |-  ( ph -> A e. V ) | 
						
							| 2 |  | sge0prle.b |  |-  ( ph -> B e. W ) | 
						
							| 3 |  | sge0prle.d |  |-  ( ph -> D e. ( 0 [,] +oo ) ) | 
						
							| 4 |  | sge0prle.e |  |-  ( ph -> E e. ( 0 [,] +oo ) ) | 
						
							| 5 |  | sge0prle.cd |  |-  ( k = A -> C = D ) | 
						
							| 6 |  | sge0prle.ce |  |-  ( k = B -> C = E ) | 
						
							| 7 |  | preq1 |  |-  ( A = B -> { A , B } = { B , B } ) | 
						
							| 8 |  | dfsn2 |  |-  { B } = { B , B } | 
						
							| 9 | 8 | eqcomi |  |-  { B , B } = { B } | 
						
							| 10 | 9 | a1i |  |-  ( A = B -> { B , B } = { B } ) | 
						
							| 11 | 7 10 | eqtrd |  |-  ( A = B -> { A , B } = { B } ) | 
						
							| 12 | 11 | mpteq1d |  |-  ( A = B -> ( k e. { A , B } |-> C ) = ( k e. { B } |-> C ) ) | 
						
							| 13 | 12 | fveq2d |  |-  ( A = B -> ( sum^ ` ( k e. { A , B } |-> C ) ) = ( sum^ ` ( k e. { B } |-> C ) ) ) | 
						
							| 14 | 13 | adantl |  |-  ( ( ph /\ A = B ) -> ( sum^ ` ( k e. { A , B } |-> C ) ) = ( sum^ ` ( k e. { B } |-> C ) ) ) | 
						
							| 15 | 2 4 6 | sge0snmpt |  |-  ( ph -> ( sum^ ` ( k e. { B } |-> C ) ) = E ) | 
						
							| 16 | 15 | adantr |  |-  ( ( ph /\ A = B ) -> ( sum^ ` ( k e. { B } |-> C ) ) = E ) | 
						
							| 17 | 14 16 | eqtrd |  |-  ( ( ph /\ A = B ) -> ( sum^ ` ( k e. { A , B } |-> C ) ) = E ) | 
						
							| 18 |  | iccssxr |  |-  ( 0 [,] +oo ) C_ RR* | 
						
							| 19 | 18 4 | sselid |  |-  ( ph -> E e. RR* ) | 
						
							| 20 | 19 | xaddlidd |  |-  ( ph -> ( 0 +e E ) = E ) | 
						
							| 21 | 20 | eqcomd |  |-  ( ph -> E = ( 0 +e E ) ) | 
						
							| 22 |  | 0xr |  |-  0 e. RR* | 
						
							| 23 | 22 | a1i |  |-  ( ph -> 0 e. RR* ) | 
						
							| 24 | 18 3 | sselid |  |-  ( ph -> D e. RR* ) | 
						
							| 25 |  | pnfxr |  |-  +oo e. RR* | 
						
							| 26 | 25 | a1i |  |-  ( ph -> +oo e. RR* ) | 
						
							| 27 |  | iccgelb |  |-  ( ( 0 e. RR* /\ +oo e. RR* /\ D e. ( 0 [,] +oo ) ) -> 0 <_ D ) | 
						
							| 28 | 23 26 3 27 | syl3anc |  |-  ( ph -> 0 <_ D ) | 
						
							| 29 | 23 24 19 28 | xleadd1d |  |-  ( ph -> ( 0 +e E ) <_ ( D +e E ) ) | 
						
							| 30 | 21 29 | eqbrtrd |  |-  ( ph -> E <_ ( D +e E ) ) | 
						
							| 31 | 30 | adantr |  |-  ( ( ph /\ A = B ) -> E <_ ( D +e E ) ) | 
						
							| 32 | 17 31 | eqbrtrd |  |-  ( ( ph /\ A = B ) -> ( sum^ ` ( k e. { A , B } |-> C ) ) <_ ( D +e E ) ) | 
						
							| 33 | 1 | adantr |  |-  ( ( ph /\ -. A = B ) -> A e. V ) | 
						
							| 34 | 2 | adantr |  |-  ( ( ph /\ -. A = B ) -> B e. W ) | 
						
							| 35 | 3 | adantr |  |-  ( ( ph /\ -. A = B ) -> D e. ( 0 [,] +oo ) ) | 
						
							| 36 | 4 | adantr |  |-  ( ( ph /\ -. A = B ) -> E e. ( 0 [,] +oo ) ) | 
						
							| 37 |  | neqne |  |-  ( -. A = B -> A =/= B ) | 
						
							| 38 | 37 | adantl |  |-  ( ( ph /\ -. A = B ) -> A =/= B ) | 
						
							| 39 | 33 34 35 36 5 6 38 | sge0pr |  |-  ( ( ph /\ -. A = B ) -> ( sum^ ` ( k e. { A , B } |-> C ) ) = ( D +e E ) ) | 
						
							| 40 | 24 19 | xaddcld |  |-  ( ph -> ( D +e E ) e. RR* ) | 
						
							| 41 | 40 | xrleidd |  |-  ( ph -> ( D +e E ) <_ ( D +e E ) ) | 
						
							| 42 | 41 | adantr |  |-  ( ( ph /\ -. A = B ) -> ( D +e E ) <_ ( D +e E ) ) | 
						
							| 43 | 39 42 | eqbrtrd |  |-  ( ( ph /\ -. A = B ) -> ( sum^ ` ( k e. { A , B } |-> C ) ) <_ ( D +e E ) ) | 
						
							| 44 | 32 43 | pm2.61dan |  |-  ( ph -> ( sum^ ` ( k e. { A , B } |-> C ) ) <_ ( D +e E ) ) |