| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sge0fodjrnlem.k |
|
| 2 |
|
sge0fodjrnlem.n |
|
| 3 |
|
sge0fodjrnlem.bd |
|
| 4 |
|
sge0fodjrnlem.c |
|
| 5 |
|
sge0fodjrnlem.f |
|
| 6 |
|
sge0fodjrnlem.dj |
|
| 7 |
|
sge0fodjrnlem.fng |
|
| 8 |
|
sge0fodjrnlem.b |
|
| 9 |
|
sge0fodjrnlem.b0 |
|
| 10 |
|
sge0fodjrnlem.z |
|
| 11 |
|
focdmex |
|
| 12 |
4 5 11
|
sylc |
|
| 13 |
|
difssd |
|
| 14 |
|
simpl |
|
| 15 |
13
|
sselda |
|
| 16 |
14 15 8
|
syl2anc |
|
| 17 |
|
simpl |
|
| 18 |
|
dfin4 |
|
| 19 |
18
|
eqcomi |
|
| 20 |
|
inss2 |
|
| 21 |
19 20
|
eqsstri |
|
| 22 |
|
id |
|
| 23 |
21 22
|
sselid |
|
| 24 |
|
elsni |
|
| 25 |
23 24
|
syl |
|
| 26 |
25
|
adantl |
|
| 27 |
17 26 9
|
syl2anc |
|
| 28 |
1 12 13 16 27
|
sge0ss |
|
| 29 |
28
|
eqcomd |
|
| 30 |
4
|
difexd |
|
| 31 |
|
eqid |
|
| 32 |
|
fof |
|
| 33 |
5 32
|
syl |
|
| 34 |
33
|
ffvelcdmda |
|
| 35 |
|
fveq2 |
|
| 36 |
35
|
neeq1d |
|
| 37 |
36
|
cbvrabv |
|
| 38 |
35
|
cbvmptv |
|
| 39 |
38
|
rneqi |
|
| 40 |
39
|
difeq1i |
|
| 41 |
2 31 34 6 37 40
|
disjf1o |
|
| 42 |
33
|
feqmptd |
|
| 43 |
|
difssd |
|
| 44 |
43
|
sselda |
|
| 45 |
|
eldifi |
|
| 46 |
45
|
adantr |
|
| 47 |
|
id |
|
| 48 |
|
fvex |
|
| 49 |
48
|
elsn |
|
| 50 |
47 49
|
sylibr |
|
| 51 |
50
|
adantl |
|
| 52 |
46 51
|
jca |
|
| 53 |
52
|
adantll |
|
| 54 |
33
|
ffnd |
|
| 55 |
|
elpreima |
|
| 56 |
54 55
|
syl |
|
| 57 |
56
|
ad2antrr |
|
| 58 |
53 57
|
mpbird |
|
| 59 |
58 10
|
eleqtrrdi |
|
| 60 |
|
eldifn |
|
| 61 |
60
|
ad2antlr |
|
| 62 |
59 61
|
pm2.65da |
|
| 63 |
62
|
neqned |
|
| 64 |
44 63
|
jca |
|
| 65 |
36
|
elrab |
|
| 66 |
64 65
|
sylibr |
|
| 67 |
66
|
ex |
|
| 68 |
65
|
simplbi |
|
| 69 |
68
|
adantl |
|
| 70 |
10
|
eleq2i |
|
| 71 |
70
|
biimpi |
|
| 72 |
71
|
adantl |
|
| 73 |
56
|
adantr |
|
| 74 |
72 73
|
mpbid |
|
| 75 |
74
|
simprd |
|
| 76 |
|
elsni |
|
| 77 |
75 76
|
syl |
|
| 78 |
77
|
adantlr |
|
| 79 |
65
|
simprbi |
|
| 80 |
79
|
ad2antlr |
|
| 81 |
80
|
neneqd |
|
| 82 |
78 81
|
pm2.65da |
|
| 83 |
69 82
|
eldifd |
|
| 84 |
83
|
ex |
|
| 85 |
2 84
|
ralrimi |
|
| 86 |
|
dfss3 |
|
| 87 |
85 86
|
sylibr |
|
| 88 |
87
|
sseld |
|
| 89 |
67 88
|
impbid |
|
| 90 |
2 89
|
alrimi |
|
| 91 |
|
dfcleq |
|
| 92 |
90 91
|
sylibr |
|
| 93 |
42 92
|
reseq12d |
|
| 94 |
42 38
|
eqtr4di |
|
| 95 |
94
|
eqcomd |
|
| 96 |
95
|
rneqd |
|
| 97 |
|
forn |
|
| 98 |
5 97
|
syl |
|
| 99 |
96 98
|
eqtr2d |
|
| 100 |
99
|
difeq1d |
|
| 101 |
93 92 100
|
f1oeq123d |
|
| 102 |
41 101
|
mpbird |
|
| 103 |
|
fvres |
|
| 104 |
103
|
adantl |
|
| 105 |
|
simpl |
|
| 106 |
105 44 7
|
syl2anc |
|
| 107 |
104 106
|
eqtrd |
|
| 108 |
1 2 3 30 102 107 16
|
sge0f1o |
|
| 109 |
7
|
eqcomd |
|
| 110 |
109 34
|
eqeltrd |
|
| 111 |
105 44 110
|
syl2anc |
|
| 112 |
111
|
ex |
|
| 113 |
112
|
imdistani |
|
| 114 |
|
nfcv |
|
| 115 |
|
nfv |
|
| 116 |
1 115
|
nfan |
|
| 117 |
|
nfv |
|
| 118 |
116 117
|
nfim |
|
| 119 |
|
eleq1 |
|
| 120 |
119
|
anbi2d |
|
| 121 |
3
|
eleq1d |
|
| 122 |
120 121
|
imbi12d |
|
| 123 |
114 118 122 8
|
vtoclgf |
|
| 124 |
111 113 123
|
sylc |
|
| 125 |
|
simpl |
|
| 126 |
|
eldifi |
|
| 127 |
126
|
adantl |
|
| 128 |
125 127 110
|
syl2anc |
|
| 129 |
|
dfin4 |
|
| 130 |
|
difss |
|
| 131 |
129 130
|
eqsstri |
|
| 132 |
|
inss2 |
|
| 133 |
|
id |
|
| 134 |
|
dfin4 |
|
| 135 |
134
|
eqcomi |
|
| 136 |
133 135
|
eleqtrdi |
|
| 137 |
132 136
|
sselid |
|
| 138 |
137 126
|
elind |
|
| 139 |
131 138
|
sselid |
|
| 140 |
139
|
adantl |
|
| 141 |
77
|
eqcomd |
|
| 142 |
|
simpl |
|
| 143 |
74
|
simpld |
|
| 144 |
142 143 7
|
syl2anc |
|
| 145 |
141 144
|
eqtr2d |
|
| 146 |
125 140 145
|
syl2anc |
|
| 147 |
125 146
|
jca |
|
| 148 |
|
nfv |
|
| 149 |
1 148
|
nfan |
|
| 150 |
|
nfv |
|
| 151 |
149 150
|
nfim |
|
| 152 |
|
eqeq1 |
|
| 153 |
152
|
anbi2d |
|
| 154 |
3
|
eqeq1d |
|
| 155 |
153 154
|
imbi12d |
|
| 156 |
114 151 155 9
|
vtoclgf |
|
| 157 |
128 147 156
|
sylc |
|
| 158 |
2 4 43 124 157
|
sge0ss |
|
| 159 |
29 108 158
|
3eqtrd |
|