| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sge0fodjrnlem.k |
⊢ Ⅎ 𝑘 𝜑 |
| 2 |
|
sge0fodjrnlem.n |
⊢ Ⅎ 𝑛 𝜑 |
| 3 |
|
sge0fodjrnlem.bd |
⊢ ( 𝑘 = 𝐺 → 𝐵 = 𝐷 ) |
| 4 |
|
sge0fodjrnlem.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) |
| 5 |
|
sge0fodjrnlem.f |
⊢ ( 𝜑 → 𝐹 : 𝐶 –onto→ 𝐴 ) |
| 6 |
|
sge0fodjrnlem.dj |
⊢ ( 𝜑 → Disj 𝑛 ∈ 𝐶 ( 𝐹 ‘ 𝑛 ) ) |
| 7 |
|
sge0fodjrnlem.fng |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐶 ) → ( 𝐹 ‘ 𝑛 ) = 𝐺 ) |
| 8 |
|
sge0fodjrnlem.b |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ( 0 [,] +∞ ) ) |
| 9 |
|
sge0fodjrnlem.b0 |
⊢ ( ( 𝜑 ∧ 𝑘 = ∅ ) → 𝐵 = 0 ) |
| 10 |
|
sge0fodjrnlem.z |
⊢ 𝑍 = ( ◡ 𝐹 “ { ∅ } ) |
| 11 |
|
focdmex |
⊢ ( 𝐶 ∈ 𝑉 → ( 𝐹 : 𝐶 –onto→ 𝐴 → 𝐴 ∈ V ) ) |
| 12 |
4 5 11
|
sylc |
⊢ ( 𝜑 → 𝐴 ∈ V ) |
| 13 |
|
difssd |
⊢ ( 𝜑 → ( 𝐴 ∖ { ∅ } ) ⊆ 𝐴 ) |
| 14 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ { ∅ } ) ) → 𝜑 ) |
| 15 |
13
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ { ∅ } ) ) → 𝑘 ∈ 𝐴 ) |
| 16 |
14 15 8
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ { ∅ } ) ) → 𝐵 ∈ ( 0 [,] +∞ ) ) |
| 17 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ ( 𝐴 ∖ { ∅ } ) ) ) → 𝜑 ) |
| 18 |
|
dfin4 |
⊢ ( 𝐴 ∩ { ∅ } ) = ( 𝐴 ∖ ( 𝐴 ∖ { ∅ } ) ) |
| 19 |
18
|
eqcomi |
⊢ ( 𝐴 ∖ ( 𝐴 ∖ { ∅ } ) ) = ( 𝐴 ∩ { ∅ } ) |
| 20 |
|
inss2 |
⊢ ( 𝐴 ∩ { ∅ } ) ⊆ { ∅ } |
| 21 |
19 20
|
eqsstri |
⊢ ( 𝐴 ∖ ( 𝐴 ∖ { ∅ } ) ) ⊆ { ∅ } |
| 22 |
|
id |
⊢ ( 𝑘 ∈ ( 𝐴 ∖ ( 𝐴 ∖ { ∅ } ) ) → 𝑘 ∈ ( 𝐴 ∖ ( 𝐴 ∖ { ∅ } ) ) ) |
| 23 |
21 22
|
sselid |
⊢ ( 𝑘 ∈ ( 𝐴 ∖ ( 𝐴 ∖ { ∅ } ) ) → 𝑘 ∈ { ∅ } ) |
| 24 |
|
elsni |
⊢ ( 𝑘 ∈ { ∅ } → 𝑘 = ∅ ) |
| 25 |
23 24
|
syl |
⊢ ( 𝑘 ∈ ( 𝐴 ∖ ( 𝐴 ∖ { ∅ } ) ) → 𝑘 = ∅ ) |
| 26 |
25
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ ( 𝐴 ∖ { ∅ } ) ) ) → 𝑘 = ∅ ) |
| 27 |
17 26 9
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ ( 𝐴 ∖ { ∅ } ) ) ) → 𝐵 = 0 ) |
| 28 |
1 12 13 16 27
|
sge0ss |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑘 ∈ ( 𝐴 ∖ { ∅ } ) ↦ 𝐵 ) ) = ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) ) |
| 29 |
28
|
eqcomd |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) = ( Σ^ ‘ ( 𝑘 ∈ ( 𝐴 ∖ { ∅ } ) ↦ 𝐵 ) ) ) |
| 30 |
4
|
difexd |
⊢ ( 𝜑 → ( 𝐶 ∖ 𝑍 ) ∈ V ) |
| 31 |
|
eqid |
⊢ ( 𝑛 ∈ 𝐶 ↦ ( 𝐹 ‘ 𝑛 ) ) = ( 𝑛 ∈ 𝐶 ↦ ( 𝐹 ‘ 𝑛 ) ) |
| 32 |
|
fof |
⊢ ( 𝐹 : 𝐶 –onto→ 𝐴 → 𝐹 : 𝐶 ⟶ 𝐴 ) |
| 33 |
5 32
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝐶 ⟶ 𝐴 ) |
| 34 |
33
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐶 ) → ( 𝐹 ‘ 𝑛 ) ∈ 𝐴 ) |
| 35 |
|
fveq2 |
⊢ ( 𝑚 = 𝑛 → ( 𝐹 ‘ 𝑚 ) = ( 𝐹 ‘ 𝑛 ) ) |
| 36 |
35
|
neeq1d |
⊢ ( 𝑚 = 𝑛 → ( ( 𝐹 ‘ 𝑚 ) ≠ ∅ ↔ ( 𝐹 ‘ 𝑛 ) ≠ ∅ ) ) |
| 37 |
36
|
cbvrabv |
⊢ { 𝑚 ∈ 𝐶 ∣ ( 𝐹 ‘ 𝑚 ) ≠ ∅ } = { 𝑛 ∈ 𝐶 ∣ ( 𝐹 ‘ 𝑛 ) ≠ ∅ } |
| 38 |
35
|
cbvmptv |
⊢ ( 𝑚 ∈ 𝐶 ↦ ( 𝐹 ‘ 𝑚 ) ) = ( 𝑛 ∈ 𝐶 ↦ ( 𝐹 ‘ 𝑛 ) ) |
| 39 |
38
|
rneqi |
⊢ ran ( 𝑚 ∈ 𝐶 ↦ ( 𝐹 ‘ 𝑚 ) ) = ran ( 𝑛 ∈ 𝐶 ↦ ( 𝐹 ‘ 𝑛 ) ) |
| 40 |
39
|
difeq1i |
⊢ ( ran ( 𝑚 ∈ 𝐶 ↦ ( 𝐹 ‘ 𝑚 ) ) ∖ { ∅ } ) = ( ran ( 𝑛 ∈ 𝐶 ↦ ( 𝐹 ‘ 𝑛 ) ) ∖ { ∅ } ) |
| 41 |
2 31 34 6 37 40
|
disjf1o |
⊢ ( 𝜑 → ( ( 𝑛 ∈ 𝐶 ↦ ( 𝐹 ‘ 𝑛 ) ) ↾ { 𝑚 ∈ 𝐶 ∣ ( 𝐹 ‘ 𝑚 ) ≠ ∅ } ) : { 𝑚 ∈ 𝐶 ∣ ( 𝐹 ‘ 𝑚 ) ≠ ∅ } –1-1-onto→ ( ran ( 𝑚 ∈ 𝐶 ↦ ( 𝐹 ‘ 𝑚 ) ) ∖ { ∅ } ) ) |
| 42 |
33
|
feqmptd |
⊢ ( 𝜑 → 𝐹 = ( 𝑛 ∈ 𝐶 ↦ ( 𝐹 ‘ 𝑛 ) ) ) |
| 43 |
|
difssd |
⊢ ( 𝜑 → ( 𝐶 ∖ 𝑍 ) ⊆ 𝐶 ) |
| 44 |
43
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝐶 ∖ 𝑍 ) ) → 𝑛 ∈ 𝐶 ) |
| 45 |
|
eldifi |
⊢ ( 𝑛 ∈ ( 𝐶 ∖ 𝑍 ) → 𝑛 ∈ 𝐶 ) |
| 46 |
45
|
adantr |
⊢ ( ( 𝑛 ∈ ( 𝐶 ∖ 𝑍 ) ∧ ( 𝐹 ‘ 𝑛 ) = ∅ ) → 𝑛 ∈ 𝐶 ) |
| 47 |
|
id |
⊢ ( ( 𝐹 ‘ 𝑛 ) = ∅ → ( 𝐹 ‘ 𝑛 ) = ∅ ) |
| 48 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑛 ) ∈ V |
| 49 |
48
|
elsn |
⊢ ( ( 𝐹 ‘ 𝑛 ) ∈ { ∅ } ↔ ( 𝐹 ‘ 𝑛 ) = ∅ ) |
| 50 |
47 49
|
sylibr |
⊢ ( ( 𝐹 ‘ 𝑛 ) = ∅ → ( 𝐹 ‘ 𝑛 ) ∈ { ∅ } ) |
| 51 |
50
|
adantl |
⊢ ( ( 𝑛 ∈ ( 𝐶 ∖ 𝑍 ) ∧ ( 𝐹 ‘ 𝑛 ) = ∅ ) → ( 𝐹 ‘ 𝑛 ) ∈ { ∅ } ) |
| 52 |
46 51
|
jca |
⊢ ( ( 𝑛 ∈ ( 𝐶 ∖ 𝑍 ) ∧ ( 𝐹 ‘ 𝑛 ) = ∅ ) → ( 𝑛 ∈ 𝐶 ∧ ( 𝐹 ‘ 𝑛 ) ∈ { ∅ } ) ) |
| 53 |
52
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝐶 ∖ 𝑍 ) ) ∧ ( 𝐹 ‘ 𝑛 ) = ∅ ) → ( 𝑛 ∈ 𝐶 ∧ ( 𝐹 ‘ 𝑛 ) ∈ { ∅ } ) ) |
| 54 |
33
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn 𝐶 ) |
| 55 |
|
elpreima |
⊢ ( 𝐹 Fn 𝐶 → ( 𝑛 ∈ ( ◡ 𝐹 “ { ∅ } ) ↔ ( 𝑛 ∈ 𝐶 ∧ ( 𝐹 ‘ 𝑛 ) ∈ { ∅ } ) ) ) |
| 56 |
54 55
|
syl |
⊢ ( 𝜑 → ( 𝑛 ∈ ( ◡ 𝐹 “ { ∅ } ) ↔ ( 𝑛 ∈ 𝐶 ∧ ( 𝐹 ‘ 𝑛 ) ∈ { ∅ } ) ) ) |
| 57 |
56
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝐶 ∖ 𝑍 ) ) ∧ ( 𝐹 ‘ 𝑛 ) = ∅ ) → ( 𝑛 ∈ ( ◡ 𝐹 “ { ∅ } ) ↔ ( 𝑛 ∈ 𝐶 ∧ ( 𝐹 ‘ 𝑛 ) ∈ { ∅ } ) ) ) |
| 58 |
53 57
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝐶 ∖ 𝑍 ) ) ∧ ( 𝐹 ‘ 𝑛 ) = ∅ ) → 𝑛 ∈ ( ◡ 𝐹 “ { ∅ } ) ) |
| 59 |
58 10
|
eleqtrrdi |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝐶 ∖ 𝑍 ) ) ∧ ( 𝐹 ‘ 𝑛 ) = ∅ ) → 𝑛 ∈ 𝑍 ) |
| 60 |
|
eldifn |
⊢ ( 𝑛 ∈ ( 𝐶 ∖ 𝑍 ) → ¬ 𝑛 ∈ 𝑍 ) |
| 61 |
60
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝐶 ∖ 𝑍 ) ) ∧ ( 𝐹 ‘ 𝑛 ) = ∅ ) → ¬ 𝑛 ∈ 𝑍 ) |
| 62 |
59 61
|
pm2.65da |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝐶 ∖ 𝑍 ) ) → ¬ ( 𝐹 ‘ 𝑛 ) = ∅ ) |
| 63 |
62
|
neqned |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝐶 ∖ 𝑍 ) ) → ( 𝐹 ‘ 𝑛 ) ≠ ∅ ) |
| 64 |
44 63
|
jca |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝐶 ∖ 𝑍 ) ) → ( 𝑛 ∈ 𝐶 ∧ ( 𝐹 ‘ 𝑛 ) ≠ ∅ ) ) |
| 65 |
36
|
elrab |
⊢ ( 𝑛 ∈ { 𝑚 ∈ 𝐶 ∣ ( 𝐹 ‘ 𝑚 ) ≠ ∅ } ↔ ( 𝑛 ∈ 𝐶 ∧ ( 𝐹 ‘ 𝑛 ) ≠ ∅ ) ) |
| 66 |
64 65
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝐶 ∖ 𝑍 ) ) → 𝑛 ∈ { 𝑚 ∈ 𝐶 ∣ ( 𝐹 ‘ 𝑚 ) ≠ ∅ } ) |
| 67 |
66
|
ex |
⊢ ( 𝜑 → ( 𝑛 ∈ ( 𝐶 ∖ 𝑍 ) → 𝑛 ∈ { 𝑚 ∈ 𝐶 ∣ ( 𝐹 ‘ 𝑚 ) ≠ ∅ } ) ) |
| 68 |
65
|
simplbi |
⊢ ( 𝑛 ∈ { 𝑚 ∈ 𝐶 ∣ ( 𝐹 ‘ 𝑚 ) ≠ ∅ } → 𝑛 ∈ 𝐶 ) |
| 69 |
68
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ { 𝑚 ∈ 𝐶 ∣ ( 𝐹 ‘ 𝑚 ) ≠ ∅ } ) → 𝑛 ∈ 𝐶 ) |
| 70 |
10
|
eleq2i |
⊢ ( 𝑛 ∈ 𝑍 ↔ 𝑛 ∈ ( ◡ 𝐹 “ { ∅ } ) ) |
| 71 |
70
|
biimpi |
⊢ ( 𝑛 ∈ 𝑍 → 𝑛 ∈ ( ◡ 𝐹 “ { ∅ } ) ) |
| 72 |
71
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → 𝑛 ∈ ( ◡ 𝐹 “ { ∅ } ) ) |
| 73 |
56
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝑛 ∈ ( ◡ 𝐹 “ { ∅ } ) ↔ ( 𝑛 ∈ 𝐶 ∧ ( 𝐹 ‘ 𝑛 ) ∈ { ∅ } ) ) ) |
| 74 |
72 73
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝑛 ∈ 𝐶 ∧ ( 𝐹 ‘ 𝑛 ) ∈ { ∅ } ) ) |
| 75 |
74
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑛 ) ∈ { ∅ } ) |
| 76 |
|
elsni |
⊢ ( ( 𝐹 ‘ 𝑛 ) ∈ { ∅ } → ( 𝐹 ‘ 𝑛 ) = ∅ ) |
| 77 |
75 76
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑛 ) = ∅ ) |
| 78 |
77
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ { 𝑚 ∈ 𝐶 ∣ ( 𝐹 ‘ 𝑚 ) ≠ ∅ } ) ∧ 𝑛 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑛 ) = ∅ ) |
| 79 |
65
|
simprbi |
⊢ ( 𝑛 ∈ { 𝑚 ∈ 𝐶 ∣ ( 𝐹 ‘ 𝑚 ) ≠ ∅ } → ( 𝐹 ‘ 𝑛 ) ≠ ∅ ) |
| 80 |
79
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ { 𝑚 ∈ 𝐶 ∣ ( 𝐹 ‘ 𝑚 ) ≠ ∅ } ) ∧ 𝑛 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑛 ) ≠ ∅ ) |
| 81 |
80
|
neneqd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ { 𝑚 ∈ 𝐶 ∣ ( 𝐹 ‘ 𝑚 ) ≠ ∅ } ) ∧ 𝑛 ∈ 𝑍 ) → ¬ ( 𝐹 ‘ 𝑛 ) = ∅ ) |
| 82 |
78 81
|
pm2.65da |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ { 𝑚 ∈ 𝐶 ∣ ( 𝐹 ‘ 𝑚 ) ≠ ∅ } ) → ¬ 𝑛 ∈ 𝑍 ) |
| 83 |
69 82
|
eldifd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ { 𝑚 ∈ 𝐶 ∣ ( 𝐹 ‘ 𝑚 ) ≠ ∅ } ) → 𝑛 ∈ ( 𝐶 ∖ 𝑍 ) ) |
| 84 |
83
|
ex |
⊢ ( 𝜑 → ( 𝑛 ∈ { 𝑚 ∈ 𝐶 ∣ ( 𝐹 ‘ 𝑚 ) ≠ ∅ } → 𝑛 ∈ ( 𝐶 ∖ 𝑍 ) ) ) |
| 85 |
2 84
|
ralrimi |
⊢ ( 𝜑 → ∀ 𝑛 ∈ { 𝑚 ∈ 𝐶 ∣ ( 𝐹 ‘ 𝑚 ) ≠ ∅ } 𝑛 ∈ ( 𝐶 ∖ 𝑍 ) ) |
| 86 |
|
dfss3 |
⊢ ( { 𝑚 ∈ 𝐶 ∣ ( 𝐹 ‘ 𝑚 ) ≠ ∅ } ⊆ ( 𝐶 ∖ 𝑍 ) ↔ ∀ 𝑛 ∈ { 𝑚 ∈ 𝐶 ∣ ( 𝐹 ‘ 𝑚 ) ≠ ∅ } 𝑛 ∈ ( 𝐶 ∖ 𝑍 ) ) |
| 87 |
85 86
|
sylibr |
⊢ ( 𝜑 → { 𝑚 ∈ 𝐶 ∣ ( 𝐹 ‘ 𝑚 ) ≠ ∅ } ⊆ ( 𝐶 ∖ 𝑍 ) ) |
| 88 |
87
|
sseld |
⊢ ( 𝜑 → ( 𝑛 ∈ { 𝑚 ∈ 𝐶 ∣ ( 𝐹 ‘ 𝑚 ) ≠ ∅ } → 𝑛 ∈ ( 𝐶 ∖ 𝑍 ) ) ) |
| 89 |
67 88
|
impbid |
⊢ ( 𝜑 → ( 𝑛 ∈ ( 𝐶 ∖ 𝑍 ) ↔ 𝑛 ∈ { 𝑚 ∈ 𝐶 ∣ ( 𝐹 ‘ 𝑚 ) ≠ ∅ } ) ) |
| 90 |
2 89
|
alrimi |
⊢ ( 𝜑 → ∀ 𝑛 ( 𝑛 ∈ ( 𝐶 ∖ 𝑍 ) ↔ 𝑛 ∈ { 𝑚 ∈ 𝐶 ∣ ( 𝐹 ‘ 𝑚 ) ≠ ∅ } ) ) |
| 91 |
|
dfcleq |
⊢ ( ( 𝐶 ∖ 𝑍 ) = { 𝑚 ∈ 𝐶 ∣ ( 𝐹 ‘ 𝑚 ) ≠ ∅ } ↔ ∀ 𝑛 ( 𝑛 ∈ ( 𝐶 ∖ 𝑍 ) ↔ 𝑛 ∈ { 𝑚 ∈ 𝐶 ∣ ( 𝐹 ‘ 𝑚 ) ≠ ∅ } ) ) |
| 92 |
90 91
|
sylibr |
⊢ ( 𝜑 → ( 𝐶 ∖ 𝑍 ) = { 𝑚 ∈ 𝐶 ∣ ( 𝐹 ‘ 𝑚 ) ≠ ∅ } ) |
| 93 |
42 92
|
reseq12d |
⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝐶 ∖ 𝑍 ) ) = ( ( 𝑛 ∈ 𝐶 ↦ ( 𝐹 ‘ 𝑛 ) ) ↾ { 𝑚 ∈ 𝐶 ∣ ( 𝐹 ‘ 𝑚 ) ≠ ∅ } ) ) |
| 94 |
42 38
|
eqtr4di |
⊢ ( 𝜑 → 𝐹 = ( 𝑚 ∈ 𝐶 ↦ ( 𝐹 ‘ 𝑚 ) ) ) |
| 95 |
94
|
eqcomd |
⊢ ( 𝜑 → ( 𝑚 ∈ 𝐶 ↦ ( 𝐹 ‘ 𝑚 ) ) = 𝐹 ) |
| 96 |
95
|
rneqd |
⊢ ( 𝜑 → ran ( 𝑚 ∈ 𝐶 ↦ ( 𝐹 ‘ 𝑚 ) ) = ran 𝐹 ) |
| 97 |
|
forn |
⊢ ( 𝐹 : 𝐶 –onto→ 𝐴 → ran 𝐹 = 𝐴 ) |
| 98 |
5 97
|
syl |
⊢ ( 𝜑 → ran 𝐹 = 𝐴 ) |
| 99 |
96 98
|
eqtr2d |
⊢ ( 𝜑 → 𝐴 = ran ( 𝑚 ∈ 𝐶 ↦ ( 𝐹 ‘ 𝑚 ) ) ) |
| 100 |
99
|
difeq1d |
⊢ ( 𝜑 → ( 𝐴 ∖ { ∅ } ) = ( ran ( 𝑚 ∈ 𝐶 ↦ ( 𝐹 ‘ 𝑚 ) ) ∖ { ∅ } ) ) |
| 101 |
93 92 100
|
f1oeq123d |
⊢ ( 𝜑 → ( ( 𝐹 ↾ ( 𝐶 ∖ 𝑍 ) ) : ( 𝐶 ∖ 𝑍 ) –1-1-onto→ ( 𝐴 ∖ { ∅ } ) ↔ ( ( 𝑛 ∈ 𝐶 ↦ ( 𝐹 ‘ 𝑛 ) ) ↾ { 𝑚 ∈ 𝐶 ∣ ( 𝐹 ‘ 𝑚 ) ≠ ∅ } ) : { 𝑚 ∈ 𝐶 ∣ ( 𝐹 ‘ 𝑚 ) ≠ ∅ } –1-1-onto→ ( ran ( 𝑚 ∈ 𝐶 ↦ ( 𝐹 ‘ 𝑚 ) ) ∖ { ∅ } ) ) ) |
| 102 |
41 101
|
mpbird |
⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝐶 ∖ 𝑍 ) ) : ( 𝐶 ∖ 𝑍 ) –1-1-onto→ ( 𝐴 ∖ { ∅ } ) ) |
| 103 |
|
fvres |
⊢ ( 𝑛 ∈ ( 𝐶 ∖ 𝑍 ) → ( ( 𝐹 ↾ ( 𝐶 ∖ 𝑍 ) ) ‘ 𝑛 ) = ( 𝐹 ‘ 𝑛 ) ) |
| 104 |
103
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝐶 ∖ 𝑍 ) ) → ( ( 𝐹 ↾ ( 𝐶 ∖ 𝑍 ) ) ‘ 𝑛 ) = ( 𝐹 ‘ 𝑛 ) ) |
| 105 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝐶 ∖ 𝑍 ) ) → 𝜑 ) |
| 106 |
105 44 7
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝐶 ∖ 𝑍 ) ) → ( 𝐹 ‘ 𝑛 ) = 𝐺 ) |
| 107 |
104 106
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝐶 ∖ 𝑍 ) ) → ( ( 𝐹 ↾ ( 𝐶 ∖ 𝑍 ) ) ‘ 𝑛 ) = 𝐺 ) |
| 108 |
1 2 3 30 102 107 16
|
sge0f1o |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑘 ∈ ( 𝐴 ∖ { ∅ } ) ↦ 𝐵 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ( 𝐶 ∖ 𝑍 ) ↦ 𝐷 ) ) ) |
| 109 |
7
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐶 ) → 𝐺 = ( 𝐹 ‘ 𝑛 ) ) |
| 110 |
109 34
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐶 ) → 𝐺 ∈ 𝐴 ) |
| 111 |
105 44 110
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝐶 ∖ 𝑍 ) ) → 𝐺 ∈ 𝐴 ) |
| 112 |
111
|
ex |
⊢ ( 𝜑 → ( 𝑛 ∈ ( 𝐶 ∖ 𝑍 ) → 𝐺 ∈ 𝐴 ) ) |
| 113 |
112
|
imdistani |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝐶 ∖ 𝑍 ) ) → ( 𝜑 ∧ 𝐺 ∈ 𝐴 ) ) |
| 114 |
|
nfcv |
⊢ Ⅎ 𝑘 𝐺 |
| 115 |
|
nfv |
⊢ Ⅎ 𝑘 𝐺 ∈ 𝐴 |
| 116 |
1 115
|
nfan |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝐺 ∈ 𝐴 ) |
| 117 |
|
nfv |
⊢ Ⅎ 𝑘 𝐷 ∈ ( 0 [,] +∞ ) |
| 118 |
116 117
|
nfim |
⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝐺 ∈ 𝐴 ) → 𝐷 ∈ ( 0 [,] +∞ ) ) |
| 119 |
|
eleq1 |
⊢ ( 𝑘 = 𝐺 → ( 𝑘 ∈ 𝐴 ↔ 𝐺 ∈ 𝐴 ) ) |
| 120 |
119
|
anbi2d |
⊢ ( 𝑘 = 𝐺 → ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ↔ ( 𝜑 ∧ 𝐺 ∈ 𝐴 ) ) ) |
| 121 |
3
|
eleq1d |
⊢ ( 𝑘 = 𝐺 → ( 𝐵 ∈ ( 0 [,] +∞ ) ↔ 𝐷 ∈ ( 0 [,] +∞ ) ) ) |
| 122 |
120 121
|
imbi12d |
⊢ ( 𝑘 = 𝐺 → ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ( 0 [,] +∞ ) ) ↔ ( ( 𝜑 ∧ 𝐺 ∈ 𝐴 ) → 𝐷 ∈ ( 0 [,] +∞ ) ) ) ) |
| 123 |
114 118 122 8
|
vtoclgf |
⊢ ( 𝐺 ∈ 𝐴 → ( ( 𝜑 ∧ 𝐺 ∈ 𝐴 ) → 𝐷 ∈ ( 0 [,] +∞ ) ) ) |
| 124 |
111 113 123
|
sylc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝐶 ∖ 𝑍 ) ) → 𝐷 ∈ ( 0 [,] +∞ ) ) |
| 125 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝐶 ∖ ( 𝐶 ∖ 𝑍 ) ) ) → 𝜑 ) |
| 126 |
|
eldifi |
⊢ ( 𝑛 ∈ ( 𝐶 ∖ ( 𝐶 ∖ 𝑍 ) ) → 𝑛 ∈ 𝐶 ) |
| 127 |
126
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝐶 ∖ ( 𝐶 ∖ 𝑍 ) ) ) → 𝑛 ∈ 𝐶 ) |
| 128 |
125 127 110
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝐶 ∖ ( 𝐶 ∖ 𝑍 ) ) ) → 𝐺 ∈ 𝐴 ) |
| 129 |
|
dfin4 |
⊢ ( 𝑍 ∩ 𝐶 ) = ( 𝑍 ∖ ( 𝑍 ∖ 𝐶 ) ) |
| 130 |
|
difss |
⊢ ( 𝑍 ∖ ( 𝑍 ∖ 𝐶 ) ) ⊆ 𝑍 |
| 131 |
129 130
|
eqsstri |
⊢ ( 𝑍 ∩ 𝐶 ) ⊆ 𝑍 |
| 132 |
|
inss2 |
⊢ ( 𝐶 ∩ 𝑍 ) ⊆ 𝑍 |
| 133 |
|
id |
⊢ ( 𝑛 ∈ ( 𝐶 ∖ ( 𝐶 ∖ 𝑍 ) ) → 𝑛 ∈ ( 𝐶 ∖ ( 𝐶 ∖ 𝑍 ) ) ) |
| 134 |
|
dfin4 |
⊢ ( 𝐶 ∩ 𝑍 ) = ( 𝐶 ∖ ( 𝐶 ∖ 𝑍 ) ) |
| 135 |
134
|
eqcomi |
⊢ ( 𝐶 ∖ ( 𝐶 ∖ 𝑍 ) ) = ( 𝐶 ∩ 𝑍 ) |
| 136 |
133 135
|
eleqtrdi |
⊢ ( 𝑛 ∈ ( 𝐶 ∖ ( 𝐶 ∖ 𝑍 ) ) → 𝑛 ∈ ( 𝐶 ∩ 𝑍 ) ) |
| 137 |
132 136
|
sselid |
⊢ ( 𝑛 ∈ ( 𝐶 ∖ ( 𝐶 ∖ 𝑍 ) ) → 𝑛 ∈ 𝑍 ) |
| 138 |
137 126
|
elind |
⊢ ( 𝑛 ∈ ( 𝐶 ∖ ( 𝐶 ∖ 𝑍 ) ) → 𝑛 ∈ ( 𝑍 ∩ 𝐶 ) ) |
| 139 |
131 138
|
sselid |
⊢ ( 𝑛 ∈ ( 𝐶 ∖ ( 𝐶 ∖ 𝑍 ) ) → 𝑛 ∈ 𝑍 ) |
| 140 |
139
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝐶 ∖ ( 𝐶 ∖ 𝑍 ) ) ) → 𝑛 ∈ 𝑍 ) |
| 141 |
77
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ∅ = ( 𝐹 ‘ 𝑛 ) ) |
| 142 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → 𝜑 ) |
| 143 |
74
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → 𝑛 ∈ 𝐶 ) |
| 144 |
142 143 7
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑛 ) = 𝐺 ) |
| 145 |
141 144
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → 𝐺 = ∅ ) |
| 146 |
125 140 145
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝐶 ∖ ( 𝐶 ∖ 𝑍 ) ) ) → 𝐺 = ∅ ) |
| 147 |
125 146
|
jca |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝐶 ∖ ( 𝐶 ∖ 𝑍 ) ) ) → ( 𝜑 ∧ 𝐺 = ∅ ) ) |
| 148 |
|
nfv |
⊢ Ⅎ 𝑘 𝐺 = ∅ |
| 149 |
1 148
|
nfan |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝐺 = ∅ ) |
| 150 |
|
nfv |
⊢ Ⅎ 𝑘 𝐷 = 0 |
| 151 |
149 150
|
nfim |
⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝐺 = ∅ ) → 𝐷 = 0 ) |
| 152 |
|
eqeq1 |
⊢ ( 𝑘 = 𝐺 → ( 𝑘 = ∅ ↔ 𝐺 = ∅ ) ) |
| 153 |
152
|
anbi2d |
⊢ ( 𝑘 = 𝐺 → ( ( 𝜑 ∧ 𝑘 = ∅ ) ↔ ( 𝜑 ∧ 𝐺 = ∅ ) ) ) |
| 154 |
3
|
eqeq1d |
⊢ ( 𝑘 = 𝐺 → ( 𝐵 = 0 ↔ 𝐷 = 0 ) ) |
| 155 |
153 154
|
imbi12d |
⊢ ( 𝑘 = 𝐺 → ( ( ( 𝜑 ∧ 𝑘 = ∅ ) → 𝐵 = 0 ) ↔ ( ( 𝜑 ∧ 𝐺 = ∅ ) → 𝐷 = 0 ) ) ) |
| 156 |
114 151 155 9
|
vtoclgf |
⊢ ( 𝐺 ∈ 𝐴 → ( ( 𝜑 ∧ 𝐺 = ∅ ) → 𝐷 = 0 ) ) |
| 157 |
128 147 156
|
sylc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝐶 ∖ ( 𝐶 ∖ 𝑍 ) ) ) → 𝐷 = 0 ) |
| 158 |
2 4 43 124 157
|
sge0ss |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑛 ∈ ( 𝐶 ∖ 𝑍 ) ↦ 𝐷 ) ) = ( Σ^ ‘ ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ) ) |
| 159 |
29 108 158
|
3eqtrd |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) = ( Σ^ ‘ ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ) ) |