Metamath Proof Explorer


Theorem sge0fodjrnlem

Description: Re-index a nonnegative extended sum using an onto function with disjoint range, when the empty set is assigned 0 in the sum (this is true, for example, both for measures and outer measures). (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses sge0fodjrnlem.k 𝑘 𝜑
sge0fodjrnlem.n 𝑛 𝜑
sge0fodjrnlem.bd ( 𝑘 = 𝐺𝐵 = 𝐷 )
sge0fodjrnlem.c ( 𝜑𝐶𝑉 )
sge0fodjrnlem.f ( 𝜑𝐹 : 𝐶onto𝐴 )
sge0fodjrnlem.dj ( 𝜑Disj 𝑛𝐶 ( 𝐹𝑛 ) )
sge0fodjrnlem.fng ( ( 𝜑𝑛𝐶 ) → ( 𝐹𝑛 ) = 𝐺 )
sge0fodjrnlem.b ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ( 0 [,] +∞ ) )
sge0fodjrnlem.b0 ( ( 𝜑𝑘 = ∅ ) → 𝐵 = 0 )
sge0fodjrnlem.z 𝑍 = ( 𝐹 “ { ∅ } )
Assertion sge0fodjrnlem ( 𝜑 → ( Σ^ ‘ ( 𝑘𝐴𝐵 ) ) = ( Σ^ ‘ ( 𝑛𝐶𝐷 ) ) )

Proof

Step Hyp Ref Expression
1 sge0fodjrnlem.k 𝑘 𝜑
2 sge0fodjrnlem.n 𝑛 𝜑
3 sge0fodjrnlem.bd ( 𝑘 = 𝐺𝐵 = 𝐷 )
4 sge0fodjrnlem.c ( 𝜑𝐶𝑉 )
5 sge0fodjrnlem.f ( 𝜑𝐹 : 𝐶onto𝐴 )
6 sge0fodjrnlem.dj ( 𝜑Disj 𝑛𝐶 ( 𝐹𝑛 ) )
7 sge0fodjrnlem.fng ( ( 𝜑𝑛𝐶 ) → ( 𝐹𝑛 ) = 𝐺 )
8 sge0fodjrnlem.b ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ( 0 [,] +∞ ) )
9 sge0fodjrnlem.b0 ( ( 𝜑𝑘 = ∅ ) → 𝐵 = 0 )
10 sge0fodjrnlem.z 𝑍 = ( 𝐹 “ { ∅ } )
11 fornex ( 𝐶𝑉 → ( 𝐹 : 𝐶onto𝐴𝐴 ∈ V ) )
12 4 5 11 sylc ( 𝜑𝐴 ∈ V )
13 difssd ( 𝜑 → ( 𝐴 ∖ { ∅ } ) ⊆ 𝐴 )
14 simpl ( ( 𝜑𝑘 ∈ ( 𝐴 ∖ { ∅ } ) ) → 𝜑 )
15 13 sselda ( ( 𝜑𝑘 ∈ ( 𝐴 ∖ { ∅ } ) ) → 𝑘𝐴 )
16 14 15 8 syl2anc ( ( 𝜑𝑘 ∈ ( 𝐴 ∖ { ∅ } ) ) → 𝐵 ∈ ( 0 [,] +∞ ) )
17 simpl ( ( 𝜑𝑘 ∈ ( 𝐴 ∖ ( 𝐴 ∖ { ∅ } ) ) ) → 𝜑 )
18 dfin4 ( 𝐴 ∩ { ∅ } ) = ( 𝐴 ∖ ( 𝐴 ∖ { ∅ } ) )
19 18 eqcomi ( 𝐴 ∖ ( 𝐴 ∖ { ∅ } ) ) = ( 𝐴 ∩ { ∅ } )
20 inss2 ( 𝐴 ∩ { ∅ } ) ⊆ { ∅ }
21 19 20 eqsstri ( 𝐴 ∖ ( 𝐴 ∖ { ∅ } ) ) ⊆ { ∅ }
22 id ( 𝑘 ∈ ( 𝐴 ∖ ( 𝐴 ∖ { ∅ } ) ) → 𝑘 ∈ ( 𝐴 ∖ ( 𝐴 ∖ { ∅ } ) ) )
23 21 22 sseldi ( 𝑘 ∈ ( 𝐴 ∖ ( 𝐴 ∖ { ∅ } ) ) → 𝑘 ∈ { ∅ } )
24 elsni ( 𝑘 ∈ { ∅ } → 𝑘 = ∅ )
25 23 24 syl ( 𝑘 ∈ ( 𝐴 ∖ ( 𝐴 ∖ { ∅ } ) ) → 𝑘 = ∅ )
26 25 adantl ( ( 𝜑𝑘 ∈ ( 𝐴 ∖ ( 𝐴 ∖ { ∅ } ) ) ) → 𝑘 = ∅ )
27 17 26 9 syl2anc ( ( 𝜑𝑘 ∈ ( 𝐴 ∖ ( 𝐴 ∖ { ∅ } ) ) ) → 𝐵 = 0 )
28 1 12 13 16 27 sge0ss ( 𝜑 → ( Σ^ ‘ ( 𝑘 ∈ ( 𝐴 ∖ { ∅ } ) ↦ 𝐵 ) ) = ( Σ^ ‘ ( 𝑘𝐴𝐵 ) ) )
29 28 eqcomd ( 𝜑 → ( Σ^ ‘ ( 𝑘𝐴𝐵 ) ) = ( Σ^ ‘ ( 𝑘 ∈ ( 𝐴 ∖ { ∅ } ) ↦ 𝐵 ) ) )
30 difexg ( 𝐶𝑉 → ( 𝐶𝑍 ) ∈ V )
31 4 30 syl ( 𝜑 → ( 𝐶𝑍 ) ∈ V )
32 eqid ( 𝑛𝐶 ↦ ( 𝐹𝑛 ) ) = ( 𝑛𝐶 ↦ ( 𝐹𝑛 ) )
33 fof ( 𝐹 : 𝐶onto𝐴𝐹 : 𝐶𝐴 )
34 5 33 syl ( 𝜑𝐹 : 𝐶𝐴 )
35 34 ffvelrnda ( ( 𝜑𝑛𝐶 ) → ( 𝐹𝑛 ) ∈ 𝐴 )
36 fveq2 ( 𝑚 = 𝑛 → ( 𝐹𝑚 ) = ( 𝐹𝑛 ) )
37 36 neeq1d ( 𝑚 = 𝑛 → ( ( 𝐹𝑚 ) ≠ ∅ ↔ ( 𝐹𝑛 ) ≠ ∅ ) )
38 37 cbvrabv { 𝑚𝐶 ∣ ( 𝐹𝑚 ) ≠ ∅ } = { 𝑛𝐶 ∣ ( 𝐹𝑛 ) ≠ ∅ }
39 36 cbvmptv ( 𝑚𝐶 ↦ ( 𝐹𝑚 ) ) = ( 𝑛𝐶 ↦ ( 𝐹𝑛 ) )
40 39 rneqi ran ( 𝑚𝐶 ↦ ( 𝐹𝑚 ) ) = ran ( 𝑛𝐶 ↦ ( 𝐹𝑛 ) )
41 40 difeq1i ( ran ( 𝑚𝐶 ↦ ( 𝐹𝑚 ) ) ∖ { ∅ } ) = ( ran ( 𝑛𝐶 ↦ ( 𝐹𝑛 ) ) ∖ { ∅ } )
42 2 32 35 6 38 41 disjf1o ( 𝜑 → ( ( 𝑛𝐶 ↦ ( 𝐹𝑛 ) ) ↾ { 𝑚𝐶 ∣ ( 𝐹𝑚 ) ≠ ∅ } ) : { 𝑚𝐶 ∣ ( 𝐹𝑚 ) ≠ ∅ } –1-1-onto→ ( ran ( 𝑚𝐶 ↦ ( 𝐹𝑚 ) ) ∖ { ∅ } ) )
43 34 feqmptd ( 𝜑𝐹 = ( 𝑛𝐶 ↦ ( 𝐹𝑛 ) ) )
44 difssd ( 𝜑 → ( 𝐶𝑍 ) ⊆ 𝐶 )
45 44 sselda ( ( 𝜑𝑛 ∈ ( 𝐶𝑍 ) ) → 𝑛𝐶 )
46 eldifi ( 𝑛 ∈ ( 𝐶𝑍 ) → 𝑛𝐶 )
47 46 adantr ( ( 𝑛 ∈ ( 𝐶𝑍 ) ∧ ( 𝐹𝑛 ) = ∅ ) → 𝑛𝐶 )
48 id ( ( 𝐹𝑛 ) = ∅ → ( 𝐹𝑛 ) = ∅ )
49 fvex ( 𝐹𝑛 ) ∈ V
50 49 elsn ( ( 𝐹𝑛 ) ∈ { ∅ } ↔ ( 𝐹𝑛 ) = ∅ )
51 48 50 sylibr ( ( 𝐹𝑛 ) = ∅ → ( 𝐹𝑛 ) ∈ { ∅ } )
52 51 adantl ( ( 𝑛 ∈ ( 𝐶𝑍 ) ∧ ( 𝐹𝑛 ) = ∅ ) → ( 𝐹𝑛 ) ∈ { ∅ } )
53 47 52 jca ( ( 𝑛 ∈ ( 𝐶𝑍 ) ∧ ( 𝐹𝑛 ) = ∅ ) → ( 𝑛𝐶 ∧ ( 𝐹𝑛 ) ∈ { ∅ } ) )
54 53 adantll ( ( ( 𝜑𝑛 ∈ ( 𝐶𝑍 ) ) ∧ ( 𝐹𝑛 ) = ∅ ) → ( 𝑛𝐶 ∧ ( 𝐹𝑛 ) ∈ { ∅ } ) )
55 34 ffnd ( 𝜑𝐹 Fn 𝐶 )
56 elpreima ( 𝐹 Fn 𝐶 → ( 𝑛 ∈ ( 𝐹 “ { ∅ } ) ↔ ( 𝑛𝐶 ∧ ( 𝐹𝑛 ) ∈ { ∅ } ) ) )
57 55 56 syl ( 𝜑 → ( 𝑛 ∈ ( 𝐹 “ { ∅ } ) ↔ ( 𝑛𝐶 ∧ ( 𝐹𝑛 ) ∈ { ∅ } ) ) )
58 57 ad2antrr ( ( ( 𝜑𝑛 ∈ ( 𝐶𝑍 ) ) ∧ ( 𝐹𝑛 ) = ∅ ) → ( 𝑛 ∈ ( 𝐹 “ { ∅ } ) ↔ ( 𝑛𝐶 ∧ ( 𝐹𝑛 ) ∈ { ∅ } ) ) )
59 54 58 mpbird ( ( ( 𝜑𝑛 ∈ ( 𝐶𝑍 ) ) ∧ ( 𝐹𝑛 ) = ∅ ) → 𝑛 ∈ ( 𝐹 “ { ∅ } ) )
60 59 10 eleqtrrdi ( ( ( 𝜑𝑛 ∈ ( 𝐶𝑍 ) ) ∧ ( 𝐹𝑛 ) = ∅ ) → 𝑛𝑍 )
61 eldifn ( 𝑛 ∈ ( 𝐶𝑍 ) → ¬ 𝑛𝑍 )
62 61 ad2antlr ( ( ( 𝜑𝑛 ∈ ( 𝐶𝑍 ) ) ∧ ( 𝐹𝑛 ) = ∅ ) → ¬ 𝑛𝑍 )
63 60 62 pm2.65da ( ( 𝜑𝑛 ∈ ( 𝐶𝑍 ) ) → ¬ ( 𝐹𝑛 ) = ∅ )
64 63 neqned ( ( 𝜑𝑛 ∈ ( 𝐶𝑍 ) ) → ( 𝐹𝑛 ) ≠ ∅ )
65 45 64 jca ( ( 𝜑𝑛 ∈ ( 𝐶𝑍 ) ) → ( 𝑛𝐶 ∧ ( 𝐹𝑛 ) ≠ ∅ ) )
66 37 elrab ( 𝑛 ∈ { 𝑚𝐶 ∣ ( 𝐹𝑚 ) ≠ ∅ } ↔ ( 𝑛𝐶 ∧ ( 𝐹𝑛 ) ≠ ∅ ) )
67 65 66 sylibr ( ( 𝜑𝑛 ∈ ( 𝐶𝑍 ) ) → 𝑛 ∈ { 𝑚𝐶 ∣ ( 𝐹𝑚 ) ≠ ∅ } )
68 67 ex ( 𝜑 → ( 𝑛 ∈ ( 𝐶𝑍 ) → 𝑛 ∈ { 𝑚𝐶 ∣ ( 𝐹𝑚 ) ≠ ∅ } ) )
69 66 simplbi ( 𝑛 ∈ { 𝑚𝐶 ∣ ( 𝐹𝑚 ) ≠ ∅ } → 𝑛𝐶 )
70 69 adantl ( ( 𝜑𝑛 ∈ { 𝑚𝐶 ∣ ( 𝐹𝑚 ) ≠ ∅ } ) → 𝑛𝐶 )
71 10 eleq2i ( 𝑛𝑍𝑛 ∈ ( 𝐹 “ { ∅ } ) )
72 71 biimpi ( 𝑛𝑍𝑛 ∈ ( 𝐹 “ { ∅ } ) )
73 72 adantl ( ( 𝜑𝑛𝑍 ) → 𝑛 ∈ ( 𝐹 “ { ∅ } ) )
74 57 adantr ( ( 𝜑𝑛𝑍 ) → ( 𝑛 ∈ ( 𝐹 “ { ∅ } ) ↔ ( 𝑛𝐶 ∧ ( 𝐹𝑛 ) ∈ { ∅ } ) ) )
75 73 74 mpbid ( ( 𝜑𝑛𝑍 ) → ( 𝑛𝐶 ∧ ( 𝐹𝑛 ) ∈ { ∅ } ) )
76 75 simprd ( ( 𝜑𝑛𝑍 ) → ( 𝐹𝑛 ) ∈ { ∅ } )
77 elsni ( ( 𝐹𝑛 ) ∈ { ∅ } → ( 𝐹𝑛 ) = ∅ )
78 76 77 syl ( ( 𝜑𝑛𝑍 ) → ( 𝐹𝑛 ) = ∅ )
79 78 adantlr ( ( ( 𝜑𝑛 ∈ { 𝑚𝐶 ∣ ( 𝐹𝑚 ) ≠ ∅ } ) ∧ 𝑛𝑍 ) → ( 𝐹𝑛 ) = ∅ )
80 66 simprbi ( 𝑛 ∈ { 𝑚𝐶 ∣ ( 𝐹𝑚 ) ≠ ∅ } → ( 𝐹𝑛 ) ≠ ∅ )
81 80 ad2antlr ( ( ( 𝜑𝑛 ∈ { 𝑚𝐶 ∣ ( 𝐹𝑚 ) ≠ ∅ } ) ∧ 𝑛𝑍 ) → ( 𝐹𝑛 ) ≠ ∅ )
82 81 neneqd ( ( ( 𝜑𝑛 ∈ { 𝑚𝐶 ∣ ( 𝐹𝑚 ) ≠ ∅ } ) ∧ 𝑛𝑍 ) → ¬ ( 𝐹𝑛 ) = ∅ )
83 79 82 pm2.65da ( ( 𝜑𝑛 ∈ { 𝑚𝐶 ∣ ( 𝐹𝑚 ) ≠ ∅ } ) → ¬ 𝑛𝑍 )
84 70 83 eldifd ( ( 𝜑𝑛 ∈ { 𝑚𝐶 ∣ ( 𝐹𝑚 ) ≠ ∅ } ) → 𝑛 ∈ ( 𝐶𝑍 ) )
85 84 ex ( 𝜑 → ( 𝑛 ∈ { 𝑚𝐶 ∣ ( 𝐹𝑚 ) ≠ ∅ } → 𝑛 ∈ ( 𝐶𝑍 ) ) )
86 2 85 ralrimi ( 𝜑 → ∀ 𝑛 ∈ { 𝑚𝐶 ∣ ( 𝐹𝑚 ) ≠ ∅ } 𝑛 ∈ ( 𝐶𝑍 ) )
87 dfss3 ( { 𝑚𝐶 ∣ ( 𝐹𝑚 ) ≠ ∅ } ⊆ ( 𝐶𝑍 ) ↔ ∀ 𝑛 ∈ { 𝑚𝐶 ∣ ( 𝐹𝑚 ) ≠ ∅ } 𝑛 ∈ ( 𝐶𝑍 ) )
88 86 87 sylibr ( 𝜑 → { 𝑚𝐶 ∣ ( 𝐹𝑚 ) ≠ ∅ } ⊆ ( 𝐶𝑍 ) )
89 88 sseld ( 𝜑 → ( 𝑛 ∈ { 𝑚𝐶 ∣ ( 𝐹𝑚 ) ≠ ∅ } → 𝑛 ∈ ( 𝐶𝑍 ) ) )
90 68 89 impbid ( 𝜑 → ( 𝑛 ∈ ( 𝐶𝑍 ) ↔ 𝑛 ∈ { 𝑚𝐶 ∣ ( 𝐹𝑚 ) ≠ ∅ } ) )
91 2 90 alrimi ( 𝜑 → ∀ 𝑛 ( 𝑛 ∈ ( 𝐶𝑍 ) ↔ 𝑛 ∈ { 𝑚𝐶 ∣ ( 𝐹𝑚 ) ≠ ∅ } ) )
92 dfcleq ( ( 𝐶𝑍 ) = { 𝑚𝐶 ∣ ( 𝐹𝑚 ) ≠ ∅ } ↔ ∀ 𝑛 ( 𝑛 ∈ ( 𝐶𝑍 ) ↔ 𝑛 ∈ { 𝑚𝐶 ∣ ( 𝐹𝑚 ) ≠ ∅ } ) )
93 91 92 sylibr ( 𝜑 → ( 𝐶𝑍 ) = { 𝑚𝐶 ∣ ( 𝐹𝑚 ) ≠ ∅ } )
94 43 93 reseq12d ( 𝜑 → ( 𝐹 ↾ ( 𝐶𝑍 ) ) = ( ( 𝑛𝐶 ↦ ( 𝐹𝑛 ) ) ↾ { 𝑚𝐶 ∣ ( 𝐹𝑚 ) ≠ ∅ } ) )
95 43 39 eqtr4di ( 𝜑𝐹 = ( 𝑚𝐶 ↦ ( 𝐹𝑚 ) ) )
96 95 eqcomd ( 𝜑 → ( 𝑚𝐶 ↦ ( 𝐹𝑚 ) ) = 𝐹 )
97 96 rneqd ( 𝜑 → ran ( 𝑚𝐶 ↦ ( 𝐹𝑚 ) ) = ran 𝐹 )
98 forn ( 𝐹 : 𝐶onto𝐴 → ran 𝐹 = 𝐴 )
99 5 98 syl ( 𝜑 → ran 𝐹 = 𝐴 )
100 97 99 eqtr2d ( 𝜑𝐴 = ran ( 𝑚𝐶 ↦ ( 𝐹𝑚 ) ) )
101 100 difeq1d ( 𝜑 → ( 𝐴 ∖ { ∅ } ) = ( ran ( 𝑚𝐶 ↦ ( 𝐹𝑚 ) ) ∖ { ∅ } ) )
102 94 93 101 f1oeq123d ( 𝜑 → ( ( 𝐹 ↾ ( 𝐶𝑍 ) ) : ( 𝐶𝑍 ) –1-1-onto→ ( 𝐴 ∖ { ∅ } ) ↔ ( ( 𝑛𝐶 ↦ ( 𝐹𝑛 ) ) ↾ { 𝑚𝐶 ∣ ( 𝐹𝑚 ) ≠ ∅ } ) : { 𝑚𝐶 ∣ ( 𝐹𝑚 ) ≠ ∅ } –1-1-onto→ ( ran ( 𝑚𝐶 ↦ ( 𝐹𝑚 ) ) ∖ { ∅ } ) ) )
103 42 102 mpbird ( 𝜑 → ( 𝐹 ↾ ( 𝐶𝑍 ) ) : ( 𝐶𝑍 ) –1-1-onto→ ( 𝐴 ∖ { ∅ } ) )
104 fvres ( 𝑛 ∈ ( 𝐶𝑍 ) → ( ( 𝐹 ↾ ( 𝐶𝑍 ) ) ‘ 𝑛 ) = ( 𝐹𝑛 ) )
105 104 adantl ( ( 𝜑𝑛 ∈ ( 𝐶𝑍 ) ) → ( ( 𝐹 ↾ ( 𝐶𝑍 ) ) ‘ 𝑛 ) = ( 𝐹𝑛 ) )
106 simpl ( ( 𝜑𝑛 ∈ ( 𝐶𝑍 ) ) → 𝜑 )
107 106 45 7 syl2anc ( ( 𝜑𝑛 ∈ ( 𝐶𝑍 ) ) → ( 𝐹𝑛 ) = 𝐺 )
108 105 107 eqtrd ( ( 𝜑𝑛 ∈ ( 𝐶𝑍 ) ) → ( ( 𝐹 ↾ ( 𝐶𝑍 ) ) ‘ 𝑛 ) = 𝐺 )
109 1 2 3 31 103 108 16 sge0f1o ( 𝜑 → ( Σ^ ‘ ( 𝑘 ∈ ( 𝐴 ∖ { ∅ } ) ↦ 𝐵 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ( 𝐶𝑍 ) ↦ 𝐷 ) ) )
110 7 eqcomd ( ( 𝜑𝑛𝐶 ) → 𝐺 = ( 𝐹𝑛 ) )
111 110 35 eqeltrd ( ( 𝜑𝑛𝐶 ) → 𝐺𝐴 )
112 106 45 111 syl2anc ( ( 𝜑𝑛 ∈ ( 𝐶𝑍 ) ) → 𝐺𝐴 )
113 112 ex ( 𝜑 → ( 𝑛 ∈ ( 𝐶𝑍 ) → 𝐺𝐴 ) )
114 113 imdistani ( ( 𝜑𝑛 ∈ ( 𝐶𝑍 ) ) → ( 𝜑𝐺𝐴 ) )
115 nfcv 𝑘 𝐺
116 nfv 𝑘 𝐺𝐴
117 1 116 nfan 𝑘 ( 𝜑𝐺𝐴 )
118 nfv 𝑘 𝐷 ∈ ( 0 [,] +∞ )
119 117 118 nfim 𝑘 ( ( 𝜑𝐺𝐴 ) → 𝐷 ∈ ( 0 [,] +∞ ) )
120 eleq1 ( 𝑘 = 𝐺 → ( 𝑘𝐴𝐺𝐴 ) )
121 120 anbi2d ( 𝑘 = 𝐺 → ( ( 𝜑𝑘𝐴 ) ↔ ( 𝜑𝐺𝐴 ) ) )
122 3 eleq1d ( 𝑘 = 𝐺 → ( 𝐵 ∈ ( 0 [,] +∞ ) ↔ 𝐷 ∈ ( 0 [,] +∞ ) ) )
123 121 122 imbi12d ( 𝑘 = 𝐺 → ( ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ( 0 [,] +∞ ) ) ↔ ( ( 𝜑𝐺𝐴 ) → 𝐷 ∈ ( 0 [,] +∞ ) ) ) )
124 115 119 123 8 vtoclgf ( 𝐺𝐴 → ( ( 𝜑𝐺𝐴 ) → 𝐷 ∈ ( 0 [,] +∞ ) ) )
125 112 114 124 sylc ( ( 𝜑𝑛 ∈ ( 𝐶𝑍 ) ) → 𝐷 ∈ ( 0 [,] +∞ ) )
126 simpl ( ( 𝜑𝑛 ∈ ( 𝐶 ∖ ( 𝐶𝑍 ) ) ) → 𝜑 )
127 eldifi ( 𝑛 ∈ ( 𝐶 ∖ ( 𝐶𝑍 ) ) → 𝑛𝐶 )
128 127 adantl ( ( 𝜑𝑛 ∈ ( 𝐶 ∖ ( 𝐶𝑍 ) ) ) → 𝑛𝐶 )
129 126 128 111 syl2anc ( ( 𝜑𝑛 ∈ ( 𝐶 ∖ ( 𝐶𝑍 ) ) ) → 𝐺𝐴 )
130 dfin4 ( 𝑍𝐶 ) = ( 𝑍 ∖ ( 𝑍𝐶 ) )
131 difss ( 𝑍 ∖ ( 𝑍𝐶 ) ) ⊆ 𝑍
132 130 131 eqsstri ( 𝑍𝐶 ) ⊆ 𝑍
133 inss2 ( 𝐶𝑍 ) ⊆ 𝑍
134 id ( 𝑛 ∈ ( 𝐶 ∖ ( 𝐶𝑍 ) ) → 𝑛 ∈ ( 𝐶 ∖ ( 𝐶𝑍 ) ) )
135 dfin4 ( 𝐶𝑍 ) = ( 𝐶 ∖ ( 𝐶𝑍 ) )
136 135 eqcomi ( 𝐶 ∖ ( 𝐶𝑍 ) ) = ( 𝐶𝑍 )
137 134 136 eleqtrdi ( 𝑛 ∈ ( 𝐶 ∖ ( 𝐶𝑍 ) ) → 𝑛 ∈ ( 𝐶𝑍 ) )
138 133 137 sseldi ( 𝑛 ∈ ( 𝐶 ∖ ( 𝐶𝑍 ) ) → 𝑛𝑍 )
139 138 127 elind ( 𝑛 ∈ ( 𝐶 ∖ ( 𝐶𝑍 ) ) → 𝑛 ∈ ( 𝑍𝐶 ) )
140 132 139 sseldi ( 𝑛 ∈ ( 𝐶 ∖ ( 𝐶𝑍 ) ) → 𝑛𝑍 )
141 140 adantl ( ( 𝜑𝑛 ∈ ( 𝐶 ∖ ( 𝐶𝑍 ) ) ) → 𝑛𝑍 )
142 78 eqcomd ( ( 𝜑𝑛𝑍 ) → ∅ = ( 𝐹𝑛 ) )
143 simpl ( ( 𝜑𝑛𝑍 ) → 𝜑 )
144 75 simpld ( ( 𝜑𝑛𝑍 ) → 𝑛𝐶 )
145 143 144 7 syl2anc ( ( 𝜑𝑛𝑍 ) → ( 𝐹𝑛 ) = 𝐺 )
146 142 145 eqtr2d ( ( 𝜑𝑛𝑍 ) → 𝐺 = ∅ )
147 126 141 146 syl2anc ( ( 𝜑𝑛 ∈ ( 𝐶 ∖ ( 𝐶𝑍 ) ) ) → 𝐺 = ∅ )
148 126 147 jca ( ( 𝜑𝑛 ∈ ( 𝐶 ∖ ( 𝐶𝑍 ) ) ) → ( 𝜑𝐺 = ∅ ) )
149 nfv 𝑘 𝐺 = ∅
150 1 149 nfan 𝑘 ( 𝜑𝐺 = ∅ )
151 nfv 𝑘 𝐷 = 0
152 150 151 nfim 𝑘 ( ( 𝜑𝐺 = ∅ ) → 𝐷 = 0 )
153 eqeq1 ( 𝑘 = 𝐺 → ( 𝑘 = ∅ ↔ 𝐺 = ∅ ) )
154 153 anbi2d ( 𝑘 = 𝐺 → ( ( 𝜑𝑘 = ∅ ) ↔ ( 𝜑𝐺 = ∅ ) ) )
155 3 eqeq1d ( 𝑘 = 𝐺 → ( 𝐵 = 0 ↔ 𝐷 = 0 ) )
156 154 155 imbi12d ( 𝑘 = 𝐺 → ( ( ( 𝜑𝑘 = ∅ ) → 𝐵 = 0 ) ↔ ( ( 𝜑𝐺 = ∅ ) → 𝐷 = 0 ) ) )
157 115 152 156 9 vtoclgf ( 𝐺𝐴 → ( ( 𝜑𝐺 = ∅ ) → 𝐷 = 0 ) )
158 129 148 157 sylc ( ( 𝜑𝑛 ∈ ( 𝐶 ∖ ( 𝐶𝑍 ) ) ) → 𝐷 = 0 )
159 2 4 44 125 158 sge0ss ( 𝜑 → ( Σ^ ‘ ( 𝑛 ∈ ( 𝐶𝑍 ) ↦ 𝐷 ) ) = ( Σ^ ‘ ( 𝑛𝐶𝐷 ) ) )
160 29 109 159 3eqtrd ( 𝜑 → ( Σ^ ‘ ( 𝑘𝐴𝐵 ) ) = ( Σ^ ‘ ( 𝑛𝐶𝐷 ) ) )