| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sge0ss.kph | ⊢ Ⅎ 𝑘 𝜑 | 
						
							| 2 |  | sge0ss.b | ⊢ ( 𝜑  →  𝐵  ∈  𝑉 ) | 
						
							| 3 |  | sge0ss.a | ⊢ ( 𝜑  →  𝐴  ⊆  𝐵 ) | 
						
							| 4 |  | sge0ss.c | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝐶  ∈  ( 0 [,] +∞ ) ) | 
						
							| 5 |  | sge0ss.c0 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝐵  ∖  𝐴 ) )  →  𝐶  =  0 ) | 
						
							| 6 |  | ssexg | ⊢ ( ( 𝐴  ⊆  𝐵  ∧  𝐵  ∈  𝑉 )  →  𝐴  ∈  V ) | 
						
							| 7 | 3 2 6 | syl2anc | ⊢ ( 𝜑  →  𝐴  ∈  V ) | 
						
							| 8 | 2 | difexd | ⊢ ( 𝜑  →  ( 𝐵  ∖  𝐴 )  ∈  V ) | 
						
							| 9 |  | disjdif | ⊢ ( 𝐴  ∩  ( 𝐵  ∖  𝐴 ) )  =  ∅ | 
						
							| 10 | 9 | a1i | ⊢ ( 𝜑  →  ( 𝐴  ∩  ( 𝐵  ∖  𝐴 ) )  =  ∅ ) | 
						
							| 11 |  | 0e0iccpnf | ⊢ 0  ∈  ( 0 [,] +∞ ) | 
						
							| 12 | 11 | a1i | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝐵  ∖  𝐴 ) )  →  0  ∈  ( 0 [,] +∞ ) ) | 
						
							| 13 | 5 12 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝐵  ∖  𝐴 ) )  →  𝐶  ∈  ( 0 [,] +∞ ) ) | 
						
							| 14 | 1 7 8 10 4 13 | sge0splitmpt | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑘  ∈  ( 𝐴  ∪  ( 𝐵  ∖  𝐴 ) )  ↦  𝐶 ) )  =  ( ( Σ^ ‘ ( 𝑘  ∈  𝐴  ↦  𝐶 ) )  +𝑒  ( Σ^ ‘ ( 𝑘  ∈  ( 𝐵  ∖  𝐴 )  ↦  𝐶 ) ) ) ) | 
						
							| 15 | 14 | eqcomd | ⊢ ( 𝜑  →  ( ( Σ^ ‘ ( 𝑘  ∈  𝐴  ↦  𝐶 ) )  +𝑒  ( Σ^ ‘ ( 𝑘  ∈  ( 𝐵  ∖  𝐴 )  ↦  𝐶 ) ) )  =  ( Σ^ ‘ ( 𝑘  ∈  ( 𝐴  ∪  ( 𝐵  ∖  𝐴 ) )  ↦  𝐶 ) ) ) | 
						
							| 16 | 1 5 | mpteq2da | ⊢ ( 𝜑  →  ( 𝑘  ∈  ( 𝐵  ∖  𝐴 )  ↦  𝐶 )  =  ( 𝑘  ∈  ( 𝐵  ∖  𝐴 )  ↦  0 ) ) | 
						
							| 17 | 16 | fveq2d | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑘  ∈  ( 𝐵  ∖  𝐴 )  ↦  𝐶 ) )  =  ( Σ^ ‘ ( 𝑘  ∈  ( 𝐵  ∖  𝐴 )  ↦  0 ) ) ) | 
						
							| 18 | 1 8 | sge0z | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑘  ∈  ( 𝐵  ∖  𝐴 )  ↦  0 ) )  =  0 ) | 
						
							| 19 | 17 18 | eqtrd | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑘  ∈  ( 𝐵  ∖  𝐴 )  ↦  𝐶 ) )  =  0 ) | 
						
							| 20 | 19 | oveq2d | ⊢ ( 𝜑  →  ( ( Σ^ ‘ ( 𝑘  ∈  𝐴  ↦  𝐶 ) )  +𝑒  ( Σ^ ‘ ( 𝑘  ∈  ( 𝐵  ∖  𝐴 )  ↦  𝐶 ) ) )  =  ( ( Σ^ ‘ ( 𝑘  ∈  𝐴  ↦  𝐶 ) )  +𝑒  0 ) ) | 
						
							| 21 |  | eqid | ⊢ ( 𝑘  ∈  𝐴  ↦  𝐶 )  =  ( 𝑘  ∈  𝐴  ↦  𝐶 ) | 
						
							| 22 | 1 4 21 | fmptdf | ⊢ ( 𝜑  →  ( 𝑘  ∈  𝐴  ↦  𝐶 ) : 𝐴 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 23 | 7 22 | sge0xrcl | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑘  ∈  𝐴  ↦  𝐶 ) )  ∈  ℝ* ) | 
						
							| 24 |  | xaddrid | ⊢ ( ( Σ^ ‘ ( 𝑘  ∈  𝐴  ↦  𝐶 ) )  ∈  ℝ*  →  ( ( Σ^ ‘ ( 𝑘  ∈  𝐴  ↦  𝐶 ) )  +𝑒  0 )  =  ( Σ^ ‘ ( 𝑘  ∈  𝐴  ↦  𝐶 ) ) ) | 
						
							| 25 | 23 24 | syl | ⊢ ( 𝜑  →  ( ( Σ^ ‘ ( 𝑘  ∈  𝐴  ↦  𝐶 ) )  +𝑒  0 )  =  ( Σ^ ‘ ( 𝑘  ∈  𝐴  ↦  𝐶 ) ) ) | 
						
							| 26 |  | eqidd | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑘  ∈  𝐴  ↦  𝐶 ) )  =  ( Σ^ ‘ ( 𝑘  ∈  𝐴  ↦  𝐶 ) ) ) | 
						
							| 27 | 20 25 26 | 3eqtrrd | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑘  ∈  𝐴  ↦  𝐶 ) )  =  ( ( Σ^ ‘ ( 𝑘  ∈  𝐴  ↦  𝐶 ) )  +𝑒  ( Σ^ ‘ ( 𝑘  ∈  ( 𝐵  ∖  𝐴 )  ↦  𝐶 ) ) ) ) | 
						
							| 28 |  | undif | ⊢ ( 𝐴  ⊆  𝐵  ↔  ( 𝐴  ∪  ( 𝐵  ∖  𝐴 ) )  =  𝐵 ) | 
						
							| 29 | 3 28 | sylib | ⊢ ( 𝜑  →  ( 𝐴  ∪  ( 𝐵  ∖  𝐴 ) )  =  𝐵 ) | 
						
							| 30 | 29 | eqcomd | ⊢ ( 𝜑  →  𝐵  =  ( 𝐴  ∪  ( 𝐵  ∖  𝐴 ) ) ) | 
						
							| 31 | 30 | mpteq1d | ⊢ ( 𝜑  →  ( 𝑘  ∈  𝐵  ↦  𝐶 )  =  ( 𝑘  ∈  ( 𝐴  ∪  ( 𝐵  ∖  𝐴 ) )  ↦  𝐶 ) ) | 
						
							| 32 | 31 | fveq2d | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑘  ∈  𝐵  ↦  𝐶 ) )  =  ( Σ^ ‘ ( 𝑘  ∈  ( 𝐴  ∪  ( 𝐵  ∖  𝐴 ) )  ↦  𝐶 ) ) ) | 
						
							| 33 | 15 27 32 | 3eqtr4d | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑘  ∈  𝐴  ↦  𝐶 ) )  =  ( Σ^ ‘ ( 𝑘  ∈  𝐵  ↦  𝐶 ) ) ) |