| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sge0iunmptlemfi.a |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
| 2 |
|
sge0iunmptlemfi.b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) |
| 3 |
|
sge0iunmptlemfi.dj |
⊢ ( 𝜑 → Disj 𝑥 ∈ 𝐴 𝐵 ) |
| 4 |
|
sge0iunmptlemfi.c |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) → 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 5 |
|
sge0iunmptlemfi.re |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ∈ ℝ ) |
| 6 |
|
iuneq1 |
⊢ ( 𝑦 = ∅ → ∪ 𝑥 ∈ 𝑦 𝐵 = ∪ 𝑥 ∈ ∅ 𝐵 ) |
| 7 |
6
|
mpteq1d |
⊢ ( 𝑦 = ∅ → ( 𝑘 ∈ ∪ 𝑥 ∈ 𝑦 𝐵 ↦ 𝐶 ) = ( 𝑘 ∈ ∪ 𝑥 ∈ ∅ 𝐵 ↦ 𝐶 ) ) |
| 8 |
7
|
fveq2d |
⊢ ( 𝑦 = ∅ → ( Σ^ ‘ ( 𝑘 ∈ ∪ 𝑥 ∈ 𝑦 𝐵 ↦ 𝐶 ) ) = ( Σ^ ‘ ( 𝑘 ∈ ∪ 𝑥 ∈ ∅ 𝐵 ↦ 𝐶 ) ) ) |
| 9 |
|
mpteq1 |
⊢ ( 𝑦 = ∅ → ( 𝑥 ∈ 𝑦 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) = ( 𝑥 ∈ ∅ ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) ) |
| 10 |
9
|
fveq2d |
⊢ ( 𝑦 = ∅ → ( Σ^ ‘ ( 𝑥 ∈ 𝑦 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) ) = ( Σ^ ‘ ( 𝑥 ∈ ∅ ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) ) ) |
| 11 |
8 10
|
eqeq12d |
⊢ ( 𝑦 = ∅ → ( ( Σ^ ‘ ( 𝑘 ∈ ∪ 𝑥 ∈ 𝑦 𝐵 ↦ 𝐶 ) ) = ( Σ^ ‘ ( 𝑥 ∈ 𝑦 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) ) ↔ ( Σ^ ‘ ( 𝑘 ∈ ∪ 𝑥 ∈ ∅ 𝐵 ↦ 𝐶 ) ) = ( Σ^ ‘ ( 𝑥 ∈ ∅ ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) ) ) ) |
| 12 |
|
iuneq1 |
⊢ ( 𝑦 = 𝑧 → ∪ 𝑥 ∈ 𝑦 𝐵 = ∪ 𝑥 ∈ 𝑧 𝐵 ) |
| 13 |
12
|
mpteq1d |
⊢ ( 𝑦 = 𝑧 → ( 𝑘 ∈ ∪ 𝑥 ∈ 𝑦 𝐵 ↦ 𝐶 ) = ( 𝑘 ∈ ∪ 𝑥 ∈ 𝑧 𝐵 ↦ 𝐶 ) ) |
| 14 |
13
|
fveq2d |
⊢ ( 𝑦 = 𝑧 → ( Σ^ ‘ ( 𝑘 ∈ ∪ 𝑥 ∈ 𝑦 𝐵 ↦ 𝐶 ) ) = ( Σ^ ‘ ( 𝑘 ∈ ∪ 𝑥 ∈ 𝑧 𝐵 ↦ 𝐶 ) ) ) |
| 15 |
|
mpteq1 |
⊢ ( 𝑦 = 𝑧 → ( 𝑥 ∈ 𝑦 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) = ( 𝑥 ∈ 𝑧 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) ) |
| 16 |
15
|
fveq2d |
⊢ ( 𝑦 = 𝑧 → ( Σ^ ‘ ( 𝑥 ∈ 𝑦 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) ) = ( Σ^ ‘ ( 𝑥 ∈ 𝑧 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) ) ) |
| 17 |
14 16
|
eqeq12d |
⊢ ( 𝑦 = 𝑧 → ( ( Σ^ ‘ ( 𝑘 ∈ ∪ 𝑥 ∈ 𝑦 𝐵 ↦ 𝐶 ) ) = ( Σ^ ‘ ( 𝑥 ∈ 𝑦 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) ) ↔ ( Σ^ ‘ ( 𝑘 ∈ ∪ 𝑥 ∈ 𝑧 𝐵 ↦ 𝐶 ) ) = ( Σ^ ‘ ( 𝑥 ∈ 𝑧 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) ) ) ) |
| 18 |
|
iuneq1 |
⊢ ( 𝑦 = ( 𝑧 ∪ { 𝑤 } ) → ∪ 𝑥 ∈ 𝑦 𝐵 = ∪ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 ) |
| 19 |
18
|
mpteq1d |
⊢ ( 𝑦 = ( 𝑧 ∪ { 𝑤 } ) → ( 𝑘 ∈ ∪ 𝑥 ∈ 𝑦 𝐵 ↦ 𝐶 ) = ( 𝑘 ∈ ∪ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 ↦ 𝐶 ) ) |
| 20 |
19
|
fveq2d |
⊢ ( 𝑦 = ( 𝑧 ∪ { 𝑤 } ) → ( Σ^ ‘ ( 𝑘 ∈ ∪ 𝑥 ∈ 𝑦 𝐵 ↦ 𝐶 ) ) = ( Σ^ ‘ ( 𝑘 ∈ ∪ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 ↦ 𝐶 ) ) ) |
| 21 |
|
mpteq1 |
⊢ ( 𝑦 = ( 𝑧 ∪ { 𝑤 } ) → ( 𝑥 ∈ 𝑦 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) = ( 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) ) |
| 22 |
21
|
fveq2d |
⊢ ( 𝑦 = ( 𝑧 ∪ { 𝑤 } ) → ( Σ^ ‘ ( 𝑥 ∈ 𝑦 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) ) = ( Σ^ ‘ ( 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) ) ) |
| 23 |
20 22
|
eqeq12d |
⊢ ( 𝑦 = ( 𝑧 ∪ { 𝑤 } ) → ( ( Σ^ ‘ ( 𝑘 ∈ ∪ 𝑥 ∈ 𝑦 𝐵 ↦ 𝐶 ) ) = ( Σ^ ‘ ( 𝑥 ∈ 𝑦 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) ) ↔ ( Σ^ ‘ ( 𝑘 ∈ ∪ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 ↦ 𝐶 ) ) = ( Σ^ ‘ ( 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) ) ) ) |
| 24 |
|
iuneq1 |
⊢ ( 𝑦 = 𝐴 → ∪ 𝑥 ∈ 𝑦 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐵 ) |
| 25 |
24
|
mpteq1d |
⊢ ( 𝑦 = 𝐴 → ( 𝑘 ∈ ∪ 𝑥 ∈ 𝑦 𝐵 ↦ 𝐶 ) = ( 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↦ 𝐶 ) ) |
| 26 |
25
|
fveq2d |
⊢ ( 𝑦 = 𝐴 → ( Σ^ ‘ ( 𝑘 ∈ ∪ 𝑥 ∈ 𝑦 𝐵 ↦ 𝐶 ) ) = ( Σ^ ‘ ( 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↦ 𝐶 ) ) ) |
| 27 |
|
mpteq1 |
⊢ ( 𝑦 = 𝐴 → ( 𝑥 ∈ 𝑦 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) = ( 𝑥 ∈ 𝐴 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) ) |
| 28 |
27
|
fveq2d |
⊢ ( 𝑦 = 𝐴 → ( Σ^ ‘ ( 𝑥 ∈ 𝑦 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) ) = ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) ) ) |
| 29 |
26 28
|
eqeq12d |
⊢ ( 𝑦 = 𝐴 → ( ( Σ^ ‘ ( 𝑘 ∈ ∪ 𝑥 ∈ 𝑦 𝐵 ↦ 𝐶 ) ) = ( Σ^ ‘ ( 𝑥 ∈ 𝑦 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) ) ↔ ( Σ^ ‘ ( 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↦ 𝐶 ) ) = ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) ) ) ) |
| 30 |
|
0iun |
⊢ ∪ 𝑥 ∈ ∅ 𝐵 = ∅ |
| 31 |
|
mpteq1 |
⊢ ( ∪ 𝑥 ∈ ∅ 𝐵 = ∅ → ( 𝑘 ∈ ∪ 𝑥 ∈ ∅ 𝐵 ↦ 𝐶 ) = ( 𝑘 ∈ ∅ ↦ 𝐶 ) ) |
| 32 |
30 31
|
ax-mp |
⊢ ( 𝑘 ∈ ∪ 𝑥 ∈ ∅ 𝐵 ↦ 𝐶 ) = ( 𝑘 ∈ ∅ ↦ 𝐶 ) |
| 33 |
|
mpt0 |
⊢ ( 𝑘 ∈ ∅ ↦ 𝐶 ) = ∅ |
| 34 |
32 33
|
eqtri |
⊢ ( 𝑘 ∈ ∪ 𝑥 ∈ ∅ 𝐵 ↦ 𝐶 ) = ∅ |
| 35 |
34
|
fveq2i |
⊢ ( Σ^ ‘ ( 𝑘 ∈ ∪ 𝑥 ∈ ∅ 𝐵 ↦ 𝐶 ) ) = ( Σ^ ‘ ∅ ) |
| 36 |
|
mpt0 |
⊢ ( 𝑥 ∈ ∅ ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) = ∅ |
| 37 |
36
|
fveq2i |
⊢ ( Σ^ ‘ ( 𝑥 ∈ ∅ ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) ) = ( Σ^ ‘ ∅ ) |
| 38 |
35 37
|
eqtr4i |
⊢ ( Σ^ ‘ ( 𝑘 ∈ ∪ 𝑥 ∈ ∅ 𝐵 ↦ 𝐶 ) ) = ( Σ^ ‘ ( 𝑥 ∈ ∅ ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) ) |
| 39 |
38
|
a1i |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑘 ∈ ∪ 𝑥 ∈ ∅ 𝐵 ↦ 𝐶 ) ) = ( Σ^ ‘ ( 𝑥 ∈ ∅ ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) ) ) |
| 40 |
|
nfv |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ ( 𝑧 ⊆ 𝐴 ∧ 𝑤 ∈ ( 𝐴 ∖ 𝑧 ) ) ) |
| 41 |
|
nfcv |
⊢ Ⅎ 𝑥 Σ^ |
| 42 |
|
nfiu1 |
⊢ Ⅎ 𝑥 ∪ 𝑥 ∈ { 𝑤 } 𝐵 |
| 43 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐶 |
| 44 |
42 43
|
nfmpt |
⊢ Ⅎ 𝑥 ( 𝑘 ∈ ∪ 𝑥 ∈ { 𝑤 } 𝐵 ↦ 𝐶 ) |
| 45 |
41 44
|
nffv |
⊢ Ⅎ 𝑥 ( Σ^ ‘ ( 𝑘 ∈ ∪ 𝑥 ∈ { 𝑤 } 𝐵 ↦ 𝐶 ) ) |
| 46 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐴 ∧ 𝑤 ∈ ( 𝐴 ∖ 𝑧 ) ) ) → 𝑧 ⊆ 𝐴 ) |
| 47 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ⊆ 𝐴 ) → 𝐴 ∈ Fin ) |
| 48 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑧 ⊆ 𝐴 ) → 𝑧 ⊆ 𝐴 ) |
| 49 |
|
ssfi |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝑧 ⊆ 𝐴 ) → 𝑧 ∈ Fin ) |
| 50 |
47 48 49
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑧 ⊆ 𝐴 ) → 𝑧 ∈ Fin ) |
| 51 |
46 50
|
syldan |
⊢ ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐴 ∧ 𝑤 ∈ ( 𝐴 ∖ 𝑧 ) ) ) → 𝑧 ∈ Fin ) |
| 52 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐴 ∧ 𝑤 ∈ ( 𝐴 ∖ 𝑧 ) ) ) → 𝑤 ∈ ( 𝐴 ∖ 𝑧 ) ) |
| 53 |
|
eldifn |
⊢ ( 𝑤 ∈ ( 𝐴 ∖ 𝑧 ) → ¬ 𝑤 ∈ 𝑧 ) |
| 54 |
|
disjsn |
⊢ ( ( 𝑧 ∩ { 𝑤 } ) = ∅ ↔ ¬ 𝑤 ∈ 𝑧 ) |
| 55 |
53 54
|
sylibr |
⊢ ( 𝑤 ∈ ( 𝐴 ∖ 𝑧 ) → ( 𝑧 ∩ { 𝑤 } ) = ∅ ) |
| 56 |
55
|
adantl |
⊢ ( ( 𝑧 ⊆ 𝐴 ∧ 𝑤 ∈ ( 𝐴 ∖ 𝑧 ) ) → ( 𝑧 ∩ { 𝑤 } ) = ∅ ) |
| 57 |
56
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐴 ∧ 𝑤 ∈ ( 𝐴 ∖ 𝑧 ) ) ) → ( 𝑧 ∩ { 𝑤 } ) = ∅ ) |
| 58 |
57 54
|
sylib |
⊢ ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐴 ∧ 𝑤 ∈ ( 𝐴 ∖ 𝑧 ) ) ) → ¬ 𝑤 ∈ 𝑧 ) |
| 59 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑧 ⊆ 𝐴 ) ∧ 𝑥 ∈ 𝑧 ) → 𝜑 ) |
| 60 |
|
ssel2 |
⊢ ( ( 𝑧 ⊆ 𝐴 ∧ 𝑥 ∈ 𝑧 ) → 𝑥 ∈ 𝐴 ) |
| 61 |
60
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑧 ⊆ 𝐴 ) ∧ 𝑥 ∈ 𝑧 ) → 𝑥 ∈ 𝐴 ) |
| 62 |
59 61 5
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑧 ⊆ 𝐴 ) ∧ 𝑥 ∈ 𝑧 ) → ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ∈ ℝ ) |
| 63 |
62
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ⊆ 𝐴 ) ∧ 𝑥 ∈ 𝑧 ) → ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ∈ ℂ ) |
| 64 |
63
|
adantlrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐴 ∧ 𝑤 ∈ ( 𝐴 ∖ 𝑧 ) ) ) ∧ 𝑥 ∈ 𝑧 ) → ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ∈ ℂ ) |
| 65 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑤 → 𝐵 = ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ) |
| 66 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑤 / 𝑥 ⦌ 𝐵 |
| 67 |
|
vex |
⊢ 𝑤 ∈ V |
| 68 |
66 67 65
|
iunxsnf |
⊢ ∪ 𝑥 ∈ { 𝑤 } 𝐵 = ⦋ 𝑤 / 𝑥 ⦌ 𝐵 |
| 69 |
65 68
|
eqtr4di |
⊢ ( 𝑥 = 𝑤 → 𝐵 = ∪ 𝑥 ∈ { 𝑤 } 𝐵 ) |
| 70 |
69
|
mpteq1d |
⊢ ( 𝑥 = 𝑤 → ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) = ( 𝑘 ∈ ∪ 𝑥 ∈ { 𝑤 } 𝐵 ↦ 𝐶 ) ) |
| 71 |
70
|
fveq2d |
⊢ ( 𝑥 = 𝑤 → ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) = ( Σ^ ‘ ( 𝑘 ∈ ∪ 𝑥 ∈ { 𝑤 } 𝐵 ↦ 𝐶 ) ) ) |
| 72 |
68
|
mpteq1i |
⊢ ( 𝑘 ∈ ∪ 𝑥 ∈ { 𝑤 } 𝐵 ↦ 𝐶 ) = ( 𝑘 ∈ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ↦ 𝐶 ) |
| 73 |
72
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝐴 ∖ 𝑧 ) ) → ( 𝑘 ∈ ∪ 𝑥 ∈ { 𝑤 } 𝐵 ↦ 𝐶 ) = ( 𝑘 ∈ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ↦ 𝐶 ) ) |
| 74 |
73
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝐴 ∖ 𝑧 ) ) → ( Σ^ ‘ ( 𝑘 ∈ ∪ 𝑥 ∈ { 𝑤 } 𝐵 ↦ 𝐶 ) ) = ( Σ^ ‘ ( 𝑘 ∈ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ↦ 𝐶 ) ) ) |
| 75 |
|
eldifi |
⊢ ( 𝑤 ∈ ( 𝐴 ∖ 𝑧 ) → 𝑤 ∈ 𝐴 ) |
| 76 |
|
nfv |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) |
| 77 |
66 43
|
nfmpt |
⊢ Ⅎ 𝑥 ( 𝑘 ∈ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ↦ 𝐶 ) |
| 78 |
41 77
|
nffv |
⊢ Ⅎ 𝑥 ( Σ^ ‘ ( 𝑘 ∈ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ↦ 𝐶 ) ) |
| 79 |
|
nfcv |
⊢ Ⅎ 𝑥 ℝ |
| 80 |
78 79
|
nfel |
⊢ Ⅎ 𝑥 ( Σ^ ‘ ( 𝑘 ∈ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ↦ 𝐶 ) ) ∈ ℝ |
| 81 |
76 80
|
nfim |
⊢ Ⅎ 𝑥 ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( Σ^ ‘ ( 𝑘 ∈ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ↦ 𝐶 ) ) ∈ ℝ ) |
| 82 |
|
eleq1w |
⊢ ( 𝑥 = 𝑤 → ( 𝑥 ∈ 𝐴 ↔ 𝑤 ∈ 𝐴 ) ) |
| 83 |
82
|
anbi2d |
⊢ ( 𝑥 = 𝑤 → ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ↔ ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) ) ) |
| 84 |
70 72
|
eqtrdi |
⊢ ( 𝑥 = 𝑤 → ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) = ( 𝑘 ∈ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ↦ 𝐶 ) ) |
| 85 |
84
|
fveq2d |
⊢ ( 𝑥 = 𝑤 → ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) = ( Σ^ ‘ ( 𝑘 ∈ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ↦ 𝐶 ) ) ) |
| 86 |
85
|
eleq1d |
⊢ ( 𝑥 = 𝑤 → ( ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ∈ ℝ ↔ ( Σ^ ‘ ( 𝑘 ∈ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ↦ 𝐶 ) ) ∈ ℝ ) ) |
| 87 |
83 86
|
imbi12d |
⊢ ( 𝑥 = 𝑤 → ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ∈ ℝ ) ↔ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( Σ^ ‘ ( 𝑘 ∈ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ↦ 𝐶 ) ) ∈ ℝ ) ) ) |
| 88 |
81 87 5
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( Σ^ ‘ ( 𝑘 ∈ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ↦ 𝐶 ) ) ∈ ℝ ) |
| 89 |
75 88
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝐴 ∖ 𝑧 ) ) → ( Σ^ ‘ ( 𝑘 ∈ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ↦ 𝐶 ) ) ∈ ℝ ) |
| 90 |
74 89
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝐴 ∖ 𝑧 ) ) → ( Σ^ ‘ ( 𝑘 ∈ ∪ 𝑥 ∈ { 𝑤 } 𝐵 ↦ 𝐶 ) ) ∈ ℝ ) |
| 91 |
90
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐴 ∧ 𝑤 ∈ ( 𝐴 ∖ 𝑧 ) ) ) → ( Σ^ ‘ ( 𝑘 ∈ ∪ 𝑥 ∈ { 𝑤 } 𝐵 ↦ 𝐶 ) ) ∈ ℝ ) |
| 92 |
91
|
recnd |
⊢ ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐴 ∧ 𝑤 ∈ ( 𝐴 ∖ 𝑧 ) ) ) → ( Σ^ ‘ ( 𝑘 ∈ ∪ 𝑥 ∈ { 𝑤 } 𝐵 ↦ 𝐶 ) ) ∈ ℂ ) |
| 93 |
40 45 51 52 58 64 71 92
|
fsumsplitsn |
⊢ ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐴 ∧ 𝑤 ∈ ( 𝐴 ∖ 𝑧 ) ) ) → Σ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) = ( Σ 𝑥 ∈ 𝑧 ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) + ( Σ^ ‘ ( 𝑘 ∈ ∪ 𝑥 ∈ { 𝑤 } 𝐵 ↦ 𝐶 ) ) ) ) |
| 94 |
93
|
eqcomd |
⊢ ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐴 ∧ 𝑤 ∈ ( 𝐴 ∖ 𝑧 ) ) ) → ( Σ 𝑥 ∈ 𝑧 ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) + ( Σ^ ‘ ( 𝑘 ∈ ∪ 𝑥 ∈ { 𝑤 } 𝐵 ↦ 𝐶 ) ) ) = Σ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) |
| 95 |
94
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐴 ∧ 𝑤 ∈ ( 𝐴 ∖ 𝑧 ) ) ) ∧ ( Σ^ ‘ ( 𝑘 ∈ ∪ 𝑥 ∈ 𝑧 𝐵 ↦ 𝐶 ) ) = ( Σ^ ‘ ( 𝑥 ∈ 𝑧 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) ) ) → ( Σ 𝑥 ∈ 𝑧 ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) + ( Σ^ ‘ ( 𝑘 ∈ ∪ 𝑥 ∈ { 𝑤 } 𝐵 ↦ 𝐶 ) ) ) = Σ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) |
| 96 |
|
iunxun |
⊢ ∪ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 = ( ∪ 𝑥 ∈ 𝑧 𝐵 ∪ ∪ 𝑥 ∈ { 𝑤 } 𝐵 ) |
| 97 |
96
|
mpteq1i |
⊢ ( 𝑘 ∈ ∪ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 ↦ 𝐶 ) = ( 𝑘 ∈ ( ∪ 𝑥 ∈ 𝑧 𝐵 ∪ ∪ 𝑥 ∈ { 𝑤 } 𝐵 ) ↦ 𝐶 ) |
| 98 |
97
|
fveq2i |
⊢ ( Σ^ ‘ ( 𝑘 ∈ ∪ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 ↦ 𝐶 ) ) = ( Σ^ ‘ ( 𝑘 ∈ ( ∪ 𝑥 ∈ 𝑧 𝐵 ∪ ∪ 𝑥 ∈ { 𝑤 } 𝐵 ) ↦ 𝐶 ) ) |
| 99 |
98
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐴 ∧ 𝑤 ∈ ( 𝐴 ∖ 𝑧 ) ) ) → ( Σ^ ‘ ( 𝑘 ∈ ∪ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 ↦ 𝐶 ) ) = ( Σ^ ‘ ( 𝑘 ∈ ( ∪ 𝑥 ∈ 𝑧 𝐵 ∪ ∪ 𝑥 ∈ { 𝑤 } 𝐵 ) ↦ 𝐶 ) ) ) |
| 100 |
|
nfv |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ ( 𝑧 ⊆ 𝐴 ∧ 𝑤 ∈ ( 𝐴 ∖ 𝑧 ) ) ) |
| 101 |
2
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ) |
| 102 |
|
iunexg |
⊢ ( ( 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V ) |
| 103 |
1 101 102
|
syl2anc |
⊢ ( 𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V ) |
| 104 |
103
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ⊆ 𝐴 ) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V ) |
| 105 |
|
iunss1 |
⊢ ( 𝑧 ⊆ 𝐴 → ∪ 𝑥 ∈ 𝑧 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
| 106 |
105
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑧 ⊆ 𝐴 ) → ∪ 𝑥 ∈ 𝑧 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
| 107 |
104 106
|
ssexd |
⊢ ( ( 𝜑 ∧ 𝑧 ⊆ 𝐴 ) → ∪ 𝑥 ∈ 𝑧 𝐵 ∈ V ) |
| 108 |
107
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐴 ∧ 𝑤 ∈ ( 𝐴 ∖ 𝑧 ) ) ) → ∪ 𝑥 ∈ 𝑧 𝐵 ∈ V ) |
| 109 |
103
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝐴 ∖ 𝑧 ) ) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V ) |
| 110 |
|
snssi |
⊢ ( 𝑤 ∈ 𝐴 → { 𝑤 } ⊆ 𝐴 ) |
| 111 |
75 110
|
syl |
⊢ ( 𝑤 ∈ ( 𝐴 ∖ 𝑧 ) → { 𝑤 } ⊆ 𝐴 ) |
| 112 |
|
iunss1 |
⊢ ( { 𝑤 } ⊆ 𝐴 → ∪ 𝑥 ∈ { 𝑤 } 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
| 113 |
111 112
|
syl |
⊢ ( 𝑤 ∈ ( 𝐴 ∖ 𝑧 ) → ∪ 𝑥 ∈ { 𝑤 } 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
| 114 |
113
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝐴 ∖ 𝑧 ) ) → ∪ 𝑥 ∈ { 𝑤 } 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
| 115 |
109 114
|
ssexd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝐴 ∖ 𝑧 ) ) → ∪ 𝑥 ∈ { 𝑤 } 𝐵 ∈ V ) |
| 116 |
115
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐴 ∧ 𝑤 ∈ ( 𝐴 ∖ 𝑧 ) ) ) → ∪ 𝑥 ∈ { 𝑤 } 𝐵 ∈ V ) |
| 117 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐴 ∧ 𝑤 ∈ ( 𝐴 ∖ 𝑧 ) ) ) → Disj 𝑥 ∈ 𝐴 𝐵 ) |
| 118 |
111
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐴 ∧ 𝑤 ∈ ( 𝐴 ∖ 𝑧 ) ) ) → { 𝑤 } ⊆ 𝐴 ) |
| 119 |
|
disjiun |
⊢ ( ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ ( 𝑧 ⊆ 𝐴 ∧ { 𝑤 } ⊆ 𝐴 ∧ ( 𝑧 ∩ { 𝑤 } ) = ∅ ) ) → ( ∪ 𝑥 ∈ 𝑧 𝐵 ∩ ∪ 𝑥 ∈ { 𝑤 } 𝐵 ) = ∅ ) |
| 120 |
117 46 118 57 119
|
syl13anc |
⊢ ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐴 ∧ 𝑤 ∈ ( 𝐴 ∖ 𝑧 ) ) ) → ( ∪ 𝑥 ∈ 𝑧 𝐵 ∩ ∪ 𝑥 ∈ { 𝑤 } 𝐵 ) = ∅ ) |
| 121 |
|
eliun |
⊢ ( 𝑘 ∈ ∪ 𝑥 ∈ 𝑧 𝐵 ↔ ∃ 𝑥 ∈ 𝑧 𝑘 ∈ 𝐵 ) |
| 122 |
121
|
biimpi |
⊢ ( 𝑘 ∈ ∪ 𝑥 ∈ 𝑧 𝐵 → ∃ 𝑥 ∈ 𝑧 𝑘 ∈ 𝐵 ) |
| 123 |
122
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ⊆ 𝐴 ) ∧ 𝑘 ∈ ∪ 𝑥 ∈ 𝑧 𝐵 ) → ∃ 𝑥 ∈ 𝑧 𝑘 ∈ 𝐵 ) |
| 124 |
|
simp1l |
⊢ ( ( ( 𝜑 ∧ 𝑧 ⊆ 𝐴 ) ∧ 𝑥 ∈ 𝑧 ∧ 𝑘 ∈ 𝐵 ) → 𝜑 ) |
| 125 |
61
|
3adant3 |
⊢ ( ( ( 𝜑 ∧ 𝑧 ⊆ 𝐴 ) ∧ 𝑥 ∈ 𝑧 ∧ 𝑘 ∈ 𝐵 ) → 𝑥 ∈ 𝐴 ) |
| 126 |
|
simp3 |
⊢ ( ( ( 𝜑 ∧ 𝑧 ⊆ 𝐴 ) ∧ 𝑥 ∈ 𝑧 ∧ 𝑘 ∈ 𝐵 ) → 𝑘 ∈ 𝐵 ) |
| 127 |
124 125 126 4
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑧 ⊆ 𝐴 ) ∧ 𝑥 ∈ 𝑧 ∧ 𝑘 ∈ 𝐵 ) → 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 128 |
127
|
3exp |
⊢ ( ( 𝜑 ∧ 𝑧 ⊆ 𝐴 ) → ( 𝑥 ∈ 𝑧 → ( 𝑘 ∈ 𝐵 → 𝐶 ∈ ( 0 [,] +∞ ) ) ) ) |
| 129 |
128
|
rexlimdv |
⊢ ( ( 𝜑 ∧ 𝑧 ⊆ 𝐴 ) → ( ∃ 𝑥 ∈ 𝑧 𝑘 ∈ 𝐵 → 𝐶 ∈ ( 0 [,] +∞ ) ) ) |
| 130 |
129
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ⊆ 𝐴 ) ∧ 𝑘 ∈ ∪ 𝑥 ∈ 𝑧 𝐵 ) → ( ∃ 𝑥 ∈ 𝑧 𝑘 ∈ 𝐵 → 𝐶 ∈ ( 0 [,] +∞ ) ) ) |
| 131 |
123 130
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ⊆ 𝐴 ) ∧ 𝑘 ∈ ∪ 𝑥 ∈ 𝑧 𝐵 ) → 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 132 |
131
|
adantlrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐴 ∧ 𝑤 ∈ ( 𝐴 ∖ 𝑧 ) ) ) ∧ 𝑘 ∈ ∪ 𝑥 ∈ 𝑧 𝐵 ) → 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 133 |
|
eliun |
⊢ ( 𝑘 ∈ ∪ 𝑥 ∈ { 𝑤 } 𝐵 ↔ ∃ 𝑥 ∈ { 𝑤 } 𝑘 ∈ 𝐵 ) |
| 134 |
133
|
biimpi |
⊢ ( 𝑘 ∈ ∪ 𝑥 ∈ { 𝑤 } 𝐵 → ∃ 𝑥 ∈ { 𝑤 } 𝑘 ∈ 𝐵 ) |
| 135 |
134
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝐴 ∖ 𝑧 ) ) ∧ 𝑘 ∈ ∪ 𝑥 ∈ { 𝑤 } 𝐵 ) → ∃ 𝑥 ∈ { 𝑤 } 𝑘 ∈ 𝐵 ) |
| 136 |
|
simp1l |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝐴 ∖ 𝑧 ) ) ∧ 𝑥 ∈ { 𝑤 } ∧ 𝑘 ∈ 𝐵 ) → 𝜑 ) |
| 137 |
111
|
sselda |
⊢ ( ( 𝑤 ∈ ( 𝐴 ∖ 𝑧 ) ∧ 𝑥 ∈ { 𝑤 } ) → 𝑥 ∈ 𝐴 ) |
| 138 |
137
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝐴 ∖ 𝑧 ) ) ∧ 𝑥 ∈ { 𝑤 } ) → 𝑥 ∈ 𝐴 ) |
| 139 |
138
|
3adant3 |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝐴 ∖ 𝑧 ) ) ∧ 𝑥 ∈ { 𝑤 } ∧ 𝑘 ∈ 𝐵 ) → 𝑥 ∈ 𝐴 ) |
| 140 |
|
simp3 |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝐴 ∖ 𝑧 ) ) ∧ 𝑥 ∈ { 𝑤 } ∧ 𝑘 ∈ 𝐵 ) → 𝑘 ∈ 𝐵 ) |
| 141 |
136 139 140 4
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝐴 ∖ 𝑧 ) ) ∧ 𝑥 ∈ { 𝑤 } ∧ 𝑘 ∈ 𝐵 ) → 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 142 |
141
|
3exp |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝐴 ∖ 𝑧 ) ) → ( 𝑥 ∈ { 𝑤 } → ( 𝑘 ∈ 𝐵 → 𝐶 ∈ ( 0 [,] +∞ ) ) ) ) |
| 143 |
142
|
rexlimdv |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝐴 ∖ 𝑧 ) ) → ( ∃ 𝑥 ∈ { 𝑤 } 𝑘 ∈ 𝐵 → 𝐶 ∈ ( 0 [,] +∞ ) ) ) |
| 144 |
143
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝐴 ∖ 𝑧 ) ) ∧ 𝑘 ∈ ∪ 𝑥 ∈ { 𝑤 } 𝐵 ) → ( ∃ 𝑥 ∈ { 𝑤 } 𝑘 ∈ 𝐵 → 𝐶 ∈ ( 0 [,] +∞ ) ) ) |
| 145 |
135 144
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝐴 ∖ 𝑧 ) ) ∧ 𝑘 ∈ ∪ 𝑥 ∈ { 𝑤 } 𝐵 ) → 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 146 |
145
|
adantlrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐴 ∧ 𝑤 ∈ ( 𝐴 ∖ 𝑧 ) ) ) ∧ 𝑘 ∈ ∪ 𝑥 ∈ { 𝑤 } 𝐵 ) → 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 147 |
100 108 116 120 132 146
|
sge0splitmpt |
⊢ ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐴 ∧ 𝑤 ∈ ( 𝐴 ∖ 𝑧 ) ) ) → ( Σ^ ‘ ( 𝑘 ∈ ( ∪ 𝑥 ∈ 𝑧 𝐵 ∪ ∪ 𝑥 ∈ { 𝑤 } 𝐵 ) ↦ 𝐶 ) ) = ( ( Σ^ ‘ ( 𝑘 ∈ ∪ 𝑥 ∈ 𝑧 𝐵 ↦ 𝐶 ) ) +𝑒 ( Σ^ ‘ ( 𝑘 ∈ ∪ 𝑥 ∈ { 𝑤 } 𝐵 ↦ 𝐶 ) ) ) ) |
| 148 |
99 147
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐴 ∧ 𝑤 ∈ ( 𝐴 ∖ 𝑧 ) ) ) → ( Σ^ ‘ ( 𝑘 ∈ ∪ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 ↦ 𝐶 ) ) = ( ( Σ^ ‘ ( 𝑘 ∈ ∪ 𝑥 ∈ 𝑧 𝐵 ↦ 𝐶 ) ) +𝑒 ( Σ^ ‘ ( 𝑘 ∈ ∪ 𝑥 ∈ { 𝑤 } 𝐵 ↦ 𝐶 ) ) ) ) |
| 149 |
148
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐴 ∧ 𝑤 ∈ ( 𝐴 ∖ 𝑧 ) ) ) ∧ ( Σ^ ‘ ( 𝑘 ∈ ∪ 𝑥 ∈ 𝑧 𝐵 ↦ 𝐶 ) ) = ( Σ^ ‘ ( 𝑥 ∈ 𝑧 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) ) ) → ( Σ^ ‘ ( 𝑘 ∈ ∪ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 ↦ 𝐶 ) ) = ( ( Σ^ ‘ ( 𝑘 ∈ ∪ 𝑥 ∈ 𝑧 𝐵 ↦ 𝐶 ) ) +𝑒 ( Σ^ ‘ ( 𝑘 ∈ ∪ 𝑥 ∈ { 𝑤 } 𝐵 ↦ 𝐶 ) ) ) ) |
| 150 |
|
id |
⊢ ( ( Σ^ ‘ ( 𝑘 ∈ ∪ 𝑥 ∈ 𝑧 𝐵 ↦ 𝐶 ) ) = ( Σ^ ‘ ( 𝑥 ∈ 𝑧 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) ) → ( Σ^ ‘ ( 𝑘 ∈ ∪ 𝑥 ∈ 𝑧 𝐵 ↦ 𝐶 ) ) = ( Σ^ ‘ ( 𝑥 ∈ 𝑧 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) ) ) |
| 151 |
150
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ⊆ 𝐴 ) ∧ ( Σ^ ‘ ( 𝑘 ∈ ∪ 𝑥 ∈ 𝑧 𝐵 ↦ 𝐶 ) ) = ( Σ^ ‘ ( 𝑥 ∈ 𝑧 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) ) ) → ( Σ^ ‘ ( 𝑘 ∈ ∪ 𝑥 ∈ 𝑧 𝐵 ↦ 𝐶 ) ) = ( Σ^ ‘ ( 𝑥 ∈ 𝑧 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) ) ) |
| 152 |
4
|
3expa |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐵 ) → 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 153 |
|
eqid |
⊢ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) = ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) |
| 154 |
152 153
|
fmptd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) : 𝐵 ⟶ ( 0 [,] +∞ ) ) |
| 155 |
2 154
|
sge0ge0 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 0 ≤ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) |
| 156 |
5 155
|
jca |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ∈ ℝ ∧ 0 ≤ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) ) |
| 157 |
|
elrege0 |
⊢ ( ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ∈ ( 0 [,) +∞ ) ↔ ( ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ∈ ℝ ∧ 0 ≤ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) ) |
| 158 |
156 157
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ∈ ( 0 [,) +∞ ) ) |
| 159 |
59 61 158
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑧 ⊆ 𝐴 ) ∧ 𝑥 ∈ 𝑧 ) → ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ∈ ( 0 [,) +∞ ) ) |
| 160 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑧 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) = ( 𝑥 ∈ 𝑧 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) |
| 161 |
159 160
|
fmptd |
⊢ ( ( 𝜑 ∧ 𝑧 ⊆ 𝐴 ) → ( 𝑥 ∈ 𝑧 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) : 𝑧 ⟶ ( 0 [,) +∞ ) ) |
| 162 |
50 161
|
sge0fsum |
⊢ ( ( 𝜑 ∧ 𝑧 ⊆ 𝐴 ) → ( Σ^ ‘ ( 𝑥 ∈ 𝑧 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) ) = Σ 𝑦 ∈ 𝑧 ( ( 𝑥 ∈ 𝑧 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) ‘ 𝑦 ) ) |
| 163 |
162
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ⊆ 𝐴 ) ∧ ( Σ^ ‘ ( 𝑘 ∈ ∪ 𝑥 ∈ 𝑧 𝐵 ↦ 𝐶 ) ) = ( Σ^ ‘ ( 𝑥 ∈ 𝑧 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) ) ) → ( Σ^ ‘ ( 𝑥 ∈ 𝑧 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) ) = Σ 𝑦 ∈ 𝑧 ( ( 𝑥 ∈ 𝑧 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) ‘ 𝑦 ) ) |
| 164 |
|
fveq2 |
⊢ ( 𝑦 = 𝑥 → ( ( 𝑥 ∈ 𝑧 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) ‘ 𝑦 ) = ( ( 𝑥 ∈ 𝑧 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) ‘ 𝑥 ) ) |
| 165 |
|
nfmpt1 |
⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝑧 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) |
| 166 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑦 |
| 167 |
165 166
|
nffv |
⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝑧 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) ‘ 𝑦 ) |
| 168 |
|
nfcv |
⊢ Ⅎ 𝑦 ( ( 𝑥 ∈ 𝑧 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) ‘ 𝑥 ) |
| 169 |
164 167 168
|
cbvsum |
⊢ Σ 𝑦 ∈ 𝑧 ( ( 𝑥 ∈ 𝑧 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) ‘ 𝑦 ) = Σ 𝑥 ∈ 𝑧 ( ( 𝑥 ∈ 𝑧 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) ‘ 𝑥 ) |
| 170 |
169
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑧 ⊆ 𝐴 ) → Σ 𝑦 ∈ 𝑧 ( ( 𝑥 ∈ 𝑧 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) ‘ 𝑦 ) = Σ 𝑥 ∈ 𝑧 ( ( 𝑥 ∈ 𝑧 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) ‘ 𝑥 ) ) |
| 171 |
|
id |
⊢ ( 𝑥 ∈ 𝑧 → 𝑥 ∈ 𝑧 ) |
| 172 |
|
fvexd |
⊢ ( 𝑥 ∈ 𝑧 → ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ∈ V ) |
| 173 |
160
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ 𝑧 ∧ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ∈ V ) → ( ( 𝑥 ∈ 𝑧 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) ‘ 𝑥 ) = ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) |
| 174 |
171 172 173
|
syl2anc |
⊢ ( 𝑥 ∈ 𝑧 → ( ( 𝑥 ∈ 𝑧 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) ‘ 𝑥 ) = ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) |
| 175 |
174
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ⊆ 𝐴 ) ∧ 𝑥 ∈ 𝑧 ) → ( ( 𝑥 ∈ 𝑧 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) ‘ 𝑥 ) = ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) |
| 176 |
175
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑧 ⊆ 𝐴 ) → ∀ 𝑥 ∈ 𝑧 ( ( 𝑥 ∈ 𝑧 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) ‘ 𝑥 ) = ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) |
| 177 |
176
|
sumeq2d |
⊢ ( ( 𝜑 ∧ 𝑧 ⊆ 𝐴 ) → Σ 𝑥 ∈ 𝑧 ( ( 𝑥 ∈ 𝑧 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) ‘ 𝑥 ) = Σ 𝑥 ∈ 𝑧 ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) |
| 178 |
170 177
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑧 ⊆ 𝐴 ) → Σ 𝑦 ∈ 𝑧 ( ( 𝑥 ∈ 𝑧 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) ‘ 𝑦 ) = Σ 𝑥 ∈ 𝑧 ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) |
| 179 |
178
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ⊆ 𝐴 ) ∧ ( Σ^ ‘ ( 𝑘 ∈ ∪ 𝑥 ∈ 𝑧 𝐵 ↦ 𝐶 ) ) = ( Σ^ ‘ ( 𝑥 ∈ 𝑧 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) ) ) → Σ 𝑦 ∈ 𝑧 ( ( 𝑥 ∈ 𝑧 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) ‘ 𝑦 ) = Σ 𝑥 ∈ 𝑧 ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) |
| 180 |
151 163 179
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ⊆ 𝐴 ) ∧ ( Σ^ ‘ ( 𝑘 ∈ ∪ 𝑥 ∈ 𝑧 𝐵 ↦ 𝐶 ) ) = ( Σ^ ‘ ( 𝑥 ∈ 𝑧 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) ) ) → ( Σ^ ‘ ( 𝑘 ∈ ∪ 𝑥 ∈ 𝑧 𝐵 ↦ 𝐶 ) ) = Σ 𝑥 ∈ 𝑧 ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) |
| 181 |
180
|
adantlrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐴 ∧ 𝑤 ∈ ( 𝐴 ∖ 𝑧 ) ) ) ∧ ( Σ^ ‘ ( 𝑘 ∈ ∪ 𝑥 ∈ 𝑧 𝐵 ↦ 𝐶 ) ) = ( Σ^ ‘ ( 𝑥 ∈ 𝑧 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) ) ) → ( Σ^ ‘ ( 𝑘 ∈ ∪ 𝑥 ∈ 𝑧 𝐵 ↦ 𝐶 ) ) = Σ 𝑥 ∈ 𝑧 ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) |
| 182 |
181
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐴 ∧ 𝑤 ∈ ( 𝐴 ∖ 𝑧 ) ) ) ∧ ( Σ^ ‘ ( 𝑘 ∈ ∪ 𝑥 ∈ 𝑧 𝐵 ↦ 𝐶 ) ) = ( Σ^ ‘ ( 𝑥 ∈ 𝑧 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) ) ) → ( ( Σ^ ‘ ( 𝑘 ∈ ∪ 𝑥 ∈ 𝑧 𝐵 ↦ 𝐶 ) ) +𝑒 ( Σ^ ‘ ( 𝑘 ∈ ∪ 𝑥 ∈ { 𝑤 } 𝐵 ↦ 𝐶 ) ) ) = ( Σ 𝑥 ∈ 𝑧 ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) +𝑒 ( Σ^ ‘ ( 𝑘 ∈ ∪ 𝑥 ∈ { 𝑤 } 𝐵 ↦ 𝐶 ) ) ) ) |
| 183 |
50 62
|
fsumrecl |
⊢ ( ( 𝜑 ∧ 𝑧 ⊆ 𝐴 ) → Σ 𝑥 ∈ 𝑧 ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ∈ ℝ ) |
| 184 |
183
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐴 ∧ 𝑤 ∈ ( 𝐴 ∖ 𝑧 ) ) ) → Σ 𝑥 ∈ 𝑧 ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ∈ ℝ ) |
| 185 |
|
rexadd |
⊢ ( ( Σ 𝑥 ∈ 𝑧 ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ∈ ℝ ∧ ( Σ^ ‘ ( 𝑘 ∈ ∪ 𝑥 ∈ { 𝑤 } 𝐵 ↦ 𝐶 ) ) ∈ ℝ ) → ( Σ 𝑥 ∈ 𝑧 ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) +𝑒 ( Σ^ ‘ ( 𝑘 ∈ ∪ 𝑥 ∈ { 𝑤 } 𝐵 ↦ 𝐶 ) ) ) = ( Σ 𝑥 ∈ 𝑧 ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) + ( Σ^ ‘ ( 𝑘 ∈ ∪ 𝑥 ∈ { 𝑤 } 𝐵 ↦ 𝐶 ) ) ) ) |
| 186 |
184 91 185
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐴 ∧ 𝑤 ∈ ( 𝐴 ∖ 𝑧 ) ) ) → ( Σ 𝑥 ∈ 𝑧 ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) +𝑒 ( Σ^ ‘ ( 𝑘 ∈ ∪ 𝑥 ∈ { 𝑤 } 𝐵 ↦ 𝐶 ) ) ) = ( Σ 𝑥 ∈ 𝑧 ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) + ( Σ^ ‘ ( 𝑘 ∈ ∪ 𝑥 ∈ { 𝑤 } 𝐵 ↦ 𝐶 ) ) ) ) |
| 187 |
186
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐴 ∧ 𝑤 ∈ ( 𝐴 ∖ 𝑧 ) ) ) ∧ ( Σ^ ‘ ( 𝑘 ∈ ∪ 𝑥 ∈ 𝑧 𝐵 ↦ 𝐶 ) ) = ( Σ^ ‘ ( 𝑥 ∈ 𝑧 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) ) ) → ( Σ 𝑥 ∈ 𝑧 ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) +𝑒 ( Σ^ ‘ ( 𝑘 ∈ ∪ 𝑥 ∈ { 𝑤 } 𝐵 ↦ 𝐶 ) ) ) = ( Σ 𝑥 ∈ 𝑧 ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) + ( Σ^ ‘ ( 𝑘 ∈ ∪ 𝑥 ∈ { 𝑤 } 𝐵 ↦ 𝐶 ) ) ) ) |
| 188 |
149 182 187
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐴 ∧ 𝑤 ∈ ( 𝐴 ∖ 𝑧 ) ) ) ∧ ( Σ^ ‘ ( 𝑘 ∈ ∪ 𝑥 ∈ 𝑧 𝐵 ↦ 𝐶 ) ) = ( Σ^ ‘ ( 𝑥 ∈ 𝑧 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) ) ) → ( Σ^ ‘ ( 𝑘 ∈ ∪ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 ↦ 𝐶 ) ) = ( Σ 𝑥 ∈ 𝑧 ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) + ( Σ^ ‘ ( 𝑘 ∈ ∪ 𝑥 ∈ { 𝑤 } 𝐵 ↦ 𝐶 ) ) ) ) |
| 189 |
|
snfi |
⊢ { 𝑤 } ∈ Fin |
| 190 |
189
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐴 ∧ 𝑤 ∈ ( 𝐴 ∖ 𝑧 ) ) ) → { 𝑤 } ∈ Fin ) |
| 191 |
|
unfi |
⊢ ( ( 𝑧 ∈ Fin ∧ { 𝑤 } ∈ Fin ) → ( 𝑧 ∪ { 𝑤 } ) ∈ Fin ) |
| 192 |
51 190 191
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐴 ∧ 𝑤 ∈ ( 𝐴 ∖ 𝑧 ) ) ) → ( 𝑧 ∪ { 𝑤 } ) ∈ Fin ) |
| 193 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐴 ∧ 𝑤 ∈ ( 𝐴 ∖ 𝑧 ) ) ) ∧ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) ) → 𝜑 ) |
| 194 |
60
|
ad4ant14 |
⊢ ( ( ( ( 𝑧 ⊆ 𝐴 ∧ 𝑤 ∈ ( 𝐴 ∖ 𝑧 ) ) ∧ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) ) ∧ 𝑥 ∈ 𝑧 ) → 𝑥 ∈ 𝐴 ) |
| 195 |
|
simpll |
⊢ ( ( ( 𝑤 ∈ ( 𝐴 ∖ 𝑧 ) ∧ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) ) ∧ ¬ 𝑥 ∈ 𝑧 ) → 𝑤 ∈ ( 𝐴 ∖ 𝑧 ) ) |
| 196 |
|
elunnel1 |
⊢ ( ( 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) ∧ ¬ 𝑥 ∈ 𝑧 ) → 𝑥 ∈ { 𝑤 } ) |
| 197 |
|
elsni |
⊢ ( 𝑥 ∈ { 𝑤 } → 𝑥 = 𝑤 ) |
| 198 |
196 197
|
syl |
⊢ ( ( 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) ∧ ¬ 𝑥 ∈ 𝑧 ) → 𝑥 = 𝑤 ) |
| 199 |
198
|
adantll |
⊢ ( ( ( 𝑤 ∈ ( 𝐴 ∖ 𝑧 ) ∧ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) ) ∧ ¬ 𝑥 ∈ 𝑧 ) → 𝑥 = 𝑤 ) |
| 200 |
|
simpr |
⊢ ( ( 𝑤 ∈ ( 𝐴 ∖ 𝑧 ) ∧ 𝑥 = 𝑤 ) → 𝑥 = 𝑤 ) |
| 201 |
75
|
adantr |
⊢ ( ( 𝑤 ∈ ( 𝐴 ∖ 𝑧 ) ∧ 𝑥 = 𝑤 ) → 𝑤 ∈ 𝐴 ) |
| 202 |
200 201
|
eqeltrd |
⊢ ( ( 𝑤 ∈ ( 𝐴 ∖ 𝑧 ) ∧ 𝑥 = 𝑤 ) → 𝑥 ∈ 𝐴 ) |
| 203 |
195 199 202
|
syl2anc |
⊢ ( ( ( 𝑤 ∈ ( 𝐴 ∖ 𝑧 ) ∧ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) ) ∧ ¬ 𝑥 ∈ 𝑧 ) → 𝑥 ∈ 𝐴 ) |
| 204 |
203
|
adantlll |
⊢ ( ( ( ( 𝑧 ⊆ 𝐴 ∧ 𝑤 ∈ ( 𝐴 ∖ 𝑧 ) ) ∧ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) ) ∧ ¬ 𝑥 ∈ 𝑧 ) → 𝑥 ∈ 𝐴 ) |
| 205 |
194 204
|
pm2.61dan |
⊢ ( ( ( 𝑧 ⊆ 𝐴 ∧ 𝑤 ∈ ( 𝐴 ∖ 𝑧 ) ) ∧ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) ) → 𝑥 ∈ 𝐴 ) |
| 206 |
205
|
adantll |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐴 ∧ 𝑤 ∈ ( 𝐴 ∖ 𝑧 ) ) ) ∧ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) ) → 𝑥 ∈ 𝐴 ) |
| 207 |
193 206 158
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐴 ∧ 𝑤 ∈ ( 𝐴 ∖ 𝑧 ) ) ) ∧ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) ) → ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ∈ ( 0 [,) +∞ ) ) |
| 208 |
192 207
|
sge0fsummpt |
⊢ ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐴 ∧ 𝑤 ∈ ( 𝐴 ∖ 𝑧 ) ) ) → ( Σ^ ‘ ( 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) ) = Σ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) |
| 209 |
208
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐴 ∧ 𝑤 ∈ ( 𝐴 ∖ 𝑧 ) ) ) ∧ ( Σ^ ‘ ( 𝑘 ∈ ∪ 𝑥 ∈ 𝑧 𝐵 ↦ 𝐶 ) ) = ( Σ^ ‘ ( 𝑥 ∈ 𝑧 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) ) ) → ( Σ^ ‘ ( 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) ) = Σ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) |
| 210 |
95 188 209
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐴 ∧ 𝑤 ∈ ( 𝐴 ∖ 𝑧 ) ) ) ∧ ( Σ^ ‘ ( 𝑘 ∈ ∪ 𝑥 ∈ 𝑧 𝐵 ↦ 𝐶 ) ) = ( Σ^ ‘ ( 𝑥 ∈ 𝑧 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) ) ) → ( Σ^ ‘ ( 𝑘 ∈ ∪ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 ↦ 𝐶 ) ) = ( Σ^ ‘ ( 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) ) ) |
| 211 |
210
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐴 ∧ 𝑤 ∈ ( 𝐴 ∖ 𝑧 ) ) ) → ( ( Σ^ ‘ ( 𝑘 ∈ ∪ 𝑥 ∈ 𝑧 𝐵 ↦ 𝐶 ) ) = ( Σ^ ‘ ( 𝑥 ∈ 𝑧 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) ) → ( Σ^ ‘ ( 𝑘 ∈ ∪ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 ↦ 𝐶 ) ) = ( Σ^ ‘ ( 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) ) ) ) |
| 212 |
11 17 23 29 39 211 1
|
findcard2d |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↦ 𝐶 ) ) = ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ ( Σ^ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) ) ) |