| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sge0iunmptlemfi.a |
|
| 2 |
|
sge0iunmptlemfi.b |
|
| 3 |
|
sge0iunmptlemfi.dj |
|
| 4 |
|
sge0iunmptlemfi.c |
|
| 5 |
|
sge0iunmptlemfi.re |
|
| 6 |
|
iuneq1 |
|
| 7 |
6
|
mpteq1d |
|
| 8 |
7
|
fveq2d |
|
| 9 |
|
mpteq1 |
|
| 10 |
9
|
fveq2d |
|
| 11 |
8 10
|
eqeq12d |
|
| 12 |
|
iuneq1 |
|
| 13 |
12
|
mpteq1d |
|
| 14 |
13
|
fveq2d |
|
| 15 |
|
mpteq1 |
|
| 16 |
15
|
fveq2d |
|
| 17 |
14 16
|
eqeq12d |
|
| 18 |
|
iuneq1 |
|
| 19 |
18
|
mpteq1d |
|
| 20 |
19
|
fveq2d |
|
| 21 |
|
mpteq1 |
|
| 22 |
21
|
fveq2d |
|
| 23 |
20 22
|
eqeq12d |
|
| 24 |
|
iuneq1 |
|
| 25 |
24
|
mpteq1d |
|
| 26 |
25
|
fveq2d |
|
| 27 |
|
mpteq1 |
|
| 28 |
27
|
fveq2d |
|
| 29 |
26 28
|
eqeq12d |
|
| 30 |
|
0iun |
|
| 31 |
|
mpteq1 |
|
| 32 |
30 31
|
ax-mp |
|
| 33 |
|
mpt0 |
|
| 34 |
32 33
|
eqtri |
|
| 35 |
34
|
fveq2i |
|
| 36 |
|
mpt0 |
|
| 37 |
36
|
fveq2i |
|
| 38 |
35 37
|
eqtr4i |
|
| 39 |
38
|
a1i |
|
| 40 |
|
nfv |
|
| 41 |
|
nfcv |
|
| 42 |
|
nfiu1 |
|
| 43 |
|
nfcv |
|
| 44 |
42 43
|
nfmpt |
|
| 45 |
41 44
|
nffv |
|
| 46 |
|
simprl |
|
| 47 |
1
|
adantr |
|
| 48 |
|
simpr |
|
| 49 |
|
ssfi |
|
| 50 |
47 48 49
|
syl2anc |
|
| 51 |
46 50
|
syldan |
|
| 52 |
|
simprr |
|
| 53 |
|
eldifn |
|
| 54 |
|
disjsn |
|
| 55 |
53 54
|
sylibr |
|
| 56 |
55
|
adantl |
|
| 57 |
56
|
adantl |
|
| 58 |
57 54
|
sylib |
|
| 59 |
|
simpll |
|
| 60 |
|
ssel2 |
|
| 61 |
60
|
adantll |
|
| 62 |
59 61 5
|
syl2anc |
|
| 63 |
62
|
recnd |
|
| 64 |
63
|
adantlrr |
|
| 65 |
|
csbeq1a |
|
| 66 |
|
nfcsb1v |
|
| 67 |
|
vex |
|
| 68 |
66 67 65
|
iunxsnf |
|
| 69 |
65 68
|
eqtr4di |
|
| 70 |
69
|
mpteq1d |
|
| 71 |
70
|
fveq2d |
|
| 72 |
68
|
mpteq1i |
|
| 73 |
72
|
a1i |
|
| 74 |
73
|
fveq2d |
|
| 75 |
|
eldifi |
|
| 76 |
|
nfv |
|
| 77 |
66 43
|
nfmpt |
|
| 78 |
41 77
|
nffv |
|
| 79 |
|
nfcv |
|
| 80 |
78 79
|
nfel |
|
| 81 |
76 80
|
nfim |
|
| 82 |
|
eleq1w |
|
| 83 |
82
|
anbi2d |
|
| 84 |
70 72
|
eqtrdi |
|
| 85 |
84
|
fveq2d |
|
| 86 |
85
|
eleq1d |
|
| 87 |
83 86
|
imbi12d |
|
| 88 |
81 87 5
|
chvarfv |
|
| 89 |
75 88
|
sylan2 |
|
| 90 |
74 89
|
eqeltrd |
|
| 91 |
90
|
adantrl |
|
| 92 |
91
|
recnd |
|
| 93 |
40 45 51 52 58 64 71 92
|
fsumsplitsn |
|
| 94 |
93
|
eqcomd |
|
| 95 |
94
|
adantr |
|
| 96 |
|
iunxun |
|
| 97 |
96
|
mpteq1i |
|
| 98 |
97
|
fveq2i |
|
| 99 |
98
|
a1i |
|
| 100 |
|
nfv |
|
| 101 |
2
|
ralrimiva |
|
| 102 |
|
iunexg |
|
| 103 |
1 101 102
|
syl2anc |
|
| 104 |
103
|
adantr |
|
| 105 |
|
iunss1 |
|
| 106 |
105
|
adantl |
|
| 107 |
104 106
|
ssexd |
|
| 108 |
107
|
adantrr |
|
| 109 |
103
|
adantr |
|
| 110 |
|
snssi |
|
| 111 |
75 110
|
syl |
|
| 112 |
|
iunss1 |
|
| 113 |
111 112
|
syl |
|
| 114 |
113
|
adantl |
|
| 115 |
109 114
|
ssexd |
|
| 116 |
115
|
adantrl |
|
| 117 |
3
|
adantr |
|
| 118 |
111
|
ad2antll |
|
| 119 |
|
disjiun |
|
| 120 |
117 46 118 57 119
|
syl13anc |
|
| 121 |
|
eliun |
|
| 122 |
121
|
biimpi |
|
| 123 |
122
|
adantl |
|
| 124 |
|
simp1l |
|
| 125 |
61
|
3adant3 |
|
| 126 |
|
simp3 |
|
| 127 |
124 125 126 4
|
syl3anc |
|
| 128 |
127
|
3exp |
|
| 129 |
128
|
rexlimdv |
|
| 130 |
129
|
adantr |
|
| 131 |
123 130
|
mpd |
|
| 132 |
131
|
adantlrr |
|
| 133 |
|
eliun |
|
| 134 |
133
|
biimpi |
|
| 135 |
134
|
adantl |
|
| 136 |
|
simp1l |
|
| 137 |
111
|
sselda |
|
| 138 |
137
|
adantll |
|
| 139 |
138
|
3adant3 |
|
| 140 |
|
simp3 |
|
| 141 |
136 139 140 4
|
syl3anc |
|
| 142 |
141
|
3exp |
|
| 143 |
142
|
rexlimdv |
|
| 144 |
143
|
adantr |
|
| 145 |
135 144
|
mpd |
|
| 146 |
145
|
adantlrl |
|
| 147 |
100 108 116 120 132 146
|
sge0splitmpt |
|
| 148 |
99 147
|
eqtrd |
|
| 149 |
148
|
adantr |
|
| 150 |
|
id |
|
| 151 |
150
|
adantl |
|
| 152 |
4
|
3expa |
|
| 153 |
|
eqid |
|
| 154 |
152 153
|
fmptd |
|
| 155 |
2 154
|
sge0ge0 |
|
| 156 |
5 155
|
jca |
|
| 157 |
|
elrege0 |
|
| 158 |
156 157
|
sylibr |
|
| 159 |
59 61 158
|
syl2anc |
|
| 160 |
|
eqid |
|
| 161 |
159 160
|
fmptd |
|
| 162 |
50 161
|
sge0fsum |
|
| 163 |
162
|
adantr |
|
| 164 |
|
fveq2 |
|
| 165 |
|
nfmpt1 |
|
| 166 |
|
nfcv |
|
| 167 |
165 166
|
nffv |
|
| 168 |
|
nfcv |
|
| 169 |
164 167 168
|
cbvsum |
|
| 170 |
169
|
a1i |
|
| 171 |
|
id |
|
| 172 |
|
fvexd |
|
| 173 |
160
|
fvmpt2 |
|
| 174 |
171 172 173
|
syl2anc |
|
| 175 |
174
|
adantl |
|
| 176 |
175
|
ralrimiva |
|
| 177 |
176
|
sumeq2d |
|
| 178 |
170 177
|
eqtrd |
|
| 179 |
178
|
adantr |
|
| 180 |
151 163 179
|
3eqtrd |
|
| 181 |
180
|
adantlrr |
|
| 182 |
181
|
oveq1d |
|
| 183 |
50 62
|
fsumrecl |
|
| 184 |
183
|
adantrr |
|
| 185 |
|
rexadd |
|
| 186 |
184 91 185
|
syl2anc |
|
| 187 |
186
|
adantr |
|
| 188 |
149 182 187
|
3eqtrd |
|
| 189 |
|
snfi |
|
| 190 |
189
|
a1i |
|
| 191 |
|
unfi |
|
| 192 |
51 190 191
|
syl2anc |
|
| 193 |
|
simpll |
|
| 194 |
60
|
ad4ant14 |
|
| 195 |
|
simpll |
|
| 196 |
|
elunnel1 |
|
| 197 |
|
elsni |
|
| 198 |
196 197
|
syl |
|
| 199 |
198
|
adantll |
|
| 200 |
|
simpr |
|
| 201 |
75
|
adantr |
|
| 202 |
200 201
|
eqeltrd |
|
| 203 |
195 199 202
|
syl2anc |
|
| 204 |
203
|
adantlll |
|
| 205 |
194 204
|
pm2.61dan |
|
| 206 |
205
|
adantll |
|
| 207 |
193 206 158
|
syl2anc |
|
| 208 |
192 207
|
sge0fsummpt |
|
| 209 |
208
|
adantr |
|
| 210 |
95 188 209
|
3eqtr4d |
|
| 211 |
210
|
ex |
|
| 212 |
11 17 23 29 39 211 1
|
findcard2d |
|