Metamath Proof Explorer


Theorem sge0splitmpt

Description: Split a sum of nonnegative extended reals into two parts. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses sge0splitmpt.xph xφ
sge0splitmpt.a φAV
sge0splitmpt.b φBW
sge0splitmpt.in φAB=
sge0splitmpt.ac φxAC0+∞
sge0splitmpt.bc φxBC0+∞
Assertion sge0splitmpt φsum^xABC=sum^xAC+𝑒sum^xBC

Proof

Step Hyp Ref Expression
1 sge0splitmpt.xph xφ
2 sge0splitmpt.a φAV
3 sge0splitmpt.b φBW
4 sge0splitmpt.in φAB=
5 sge0splitmpt.ac φxAC0+∞
6 sge0splitmpt.bc φxBC0+∞
7 eqid AB=AB
8 5 adantlr φxABxAC0+∞
9 simpll φxAB¬xAφ
10 elunnel1 xAB¬xAxB
11 10 adantll φxAB¬xAxB
12 9 11 6 syl2anc φxAB¬xAC0+∞
13 8 12 pm2.61dan φxABC0+∞
14 eqid xABC=xABC
15 1 13 14 fmptdf φxABC:AB0+∞
16 2 3 7 4 15 sge0split φsum^xABC=sum^xABCA+𝑒sum^xABCB
17 ssun1 AAB
18 17 resmpti xABCA=xAC
19 18 fveq2i sum^xABCA=sum^xAC
20 ssun2 BAB
21 20 resmpti xABCB=xBC
22 21 fveq2i sum^xABCB=sum^xBC
23 19 22 oveq12i sum^xABCA+𝑒sum^xABCB=sum^xAC+𝑒sum^xBC
24 23 a1i φsum^xABCA+𝑒sum^xABCB=sum^xAC+𝑒sum^xBC
25 16 24 eqtrd φsum^xABC=sum^xAC+𝑒sum^xBC