Step |
Hyp |
Ref |
Expression |
1 |
|
sge0splitmpt.xph |
⊢ Ⅎ 𝑥 𝜑 |
2 |
|
sge0splitmpt.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
3 |
|
sge0splitmpt.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) |
4 |
|
sge0splitmpt.in |
⊢ ( 𝜑 → ( 𝐴 ∩ 𝐵 ) = ∅ ) |
5 |
|
sge0splitmpt.ac |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ( 0 [,] +∞ ) ) |
6 |
|
sge0splitmpt.bc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐶 ∈ ( 0 [,] +∞ ) ) |
7 |
|
eqid |
⊢ ( 𝐴 ∪ 𝐵 ) = ( 𝐴 ∪ 𝐵 ) |
8 |
5
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ( 0 [,] +∞ ) ) |
9 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ) ∧ ¬ 𝑥 ∈ 𝐴 ) → 𝜑 ) |
10 |
|
elunnel1 |
⊢ ( ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ∧ ¬ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐵 ) |
11 |
10
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ) ∧ ¬ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐵 ) |
12 |
9 11 6
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ) ∧ ¬ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ( 0 [,] +∞ ) ) |
13 |
8 12
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ) → 𝐶 ∈ ( 0 [,] +∞ ) ) |
14 |
|
eqid |
⊢ ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ↦ 𝐶 ) = ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ↦ 𝐶 ) |
15 |
1 13 14
|
fmptdf |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ↦ 𝐶 ) : ( 𝐴 ∪ 𝐵 ) ⟶ ( 0 [,] +∞ ) ) |
16 |
2 3 7 4 15
|
sge0split |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ↦ 𝐶 ) ) = ( ( Σ^ ‘ ( ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ↦ 𝐶 ) ↾ 𝐴 ) ) +𝑒 ( Σ^ ‘ ( ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ↦ 𝐶 ) ↾ 𝐵 ) ) ) ) |
17 |
|
ssun1 |
⊢ 𝐴 ⊆ ( 𝐴 ∪ 𝐵 ) |
18 |
17
|
resmpti |
⊢ ( ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ↦ 𝐶 ) ↾ 𝐴 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) |
19 |
18
|
fveq2i |
⊢ ( Σ^ ‘ ( ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ↦ 𝐶 ) ↾ 𝐴 ) ) = ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) |
20 |
|
ssun2 |
⊢ 𝐵 ⊆ ( 𝐴 ∪ 𝐵 ) |
21 |
20
|
resmpti |
⊢ ( ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ↦ 𝐶 ) ↾ 𝐵 ) = ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) |
22 |
21
|
fveq2i |
⊢ ( Σ^ ‘ ( ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ↦ 𝐶 ) ↾ 𝐵 ) ) = ( Σ^ ‘ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ) |
23 |
19 22
|
oveq12i |
⊢ ( ( Σ^ ‘ ( ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ↦ 𝐶 ) ↾ 𝐴 ) ) +𝑒 ( Σ^ ‘ ( ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ↦ 𝐶 ) ↾ 𝐵 ) ) ) = ( ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) +𝑒 ( Σ^ ‘ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ) ) |
24 |
23
|
a1i |
⊢ ( 𝜑 → ( ( Σ^ ‘ ( ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ↦ 𝐶 ) ↾ 𝐴 ) ) +𝑒 ( Σ^ ‘ ( ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ↦ 𝐶 ) ↾ 𝐵 ) ) ) = ( ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) +𝑒 ( Σ^ ‘ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ) ) ) |
25 |
16 24
|
eqtrd |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ↦ 𝐶 ) ) = ( ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) +𝑒 ( Σ^ ‘ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ) ) ) |