Metamath Proof Explorer


Theorem sge0splitmpt

Description: Split a sum of nonnegative extended reals into two parts. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses sge0splitmpt.xph 𝑥 𝜑
sge0splitmpt.a ( 𝜑𝐴𝑉 )
sge0splitmpt.b ( 𝜑𝐵𝑊 )
sge0splitmpt.in ( 𝜑 → ( 𝐴𝐵 ) = ∅ )
sge0splitmpt.ac ( ( 𝜑𝑥𝐴 ) → 𝐶 ∈ ( 0 [,] +∞ ) )
sge0splitmpt.bc ( ( 𝜑𝑥𝐵 ) → 𝐶 ∈ ( 0 [,] +∞ ) )
Assertion sge0splitmpt ( 𝜑 → ( Σ^ ‘ ( 𝑥 ∈ ( 𝐴𝐵 ) ↦ 𝐶 ) ) = ( ( Σ^ ‘ ( 𝑥𝐴𝐶 ) ) +𝑒 ( Σ^ ‘ ( 𝑥𝐵𝐶 ) ) ) )

Proof

Step Hyp Ref Expression
1 sge0splitmpt.xph 𝑥 𝜑
2 sge0splitmpt.a ( 𝜑𝐴𝑉 )
3 sge0splitmpt.b ( 𝜑𝐵𝑊 )
4 sge0splitmpt.in ( 𝜑 → ( 𝐴𝐵 ) = ∅ )
5 sge0splitmpt.ac ( ( 𝜑𝑥𝐴 ) → 𝐶 ∈ ( 0 [,] +∞ ) )
6 sge0splitmpt.bc ( ( 𝜑𝑥𝐵 ) → 𝐶 ∈ ( 0 [,] +∞ ) )
7 eqid ( 𝐴𝐵 ) = ( 𝐴𝐵 )
8 5 adantlr ( ( ( 𝜑𝑥 ∈ ( 𝐴𝐵 ) ) ∧ 𝑥𝐴 ) → 𝐶 ∈ ( 0 [,] +∞ ) )
9 simpll ( ( ( 𝜑𝑥 ∈ ( 𝐴𝐵 ) ) ∧ ¬ 𝑥𝐴 ) → 𝜑 )
10 elunnel1 ( ( 𝑥 ∈ ( 𝐴𝐵 ) ∧ ¬ 𝑥𝐴 ) → 𝑥𝐵 )
11 10 adantll ( ( ( 𝜑𝑥 ∈ ( 𝐴𝐵 ) ) ∧ ¬ 𝑥𝐴 ) → 𝑥𝐵 )
12 9 11 6 syl2anc ( ( ( 𝜑𝑥 ∈ ( 𝐴𝐵 ) ) ∧ ¬ 𝑥𝐴 ) → 𝐶 ∈ ( 0 [,] +∞ ) )
13 8 12 pm2.61dan ( ( 𝜑𝑥 ∈ ( 𝐴𝐵 ) ) → 𝐶 ∈ ( 0 [,] +∞ ) )
14 eqid ( 𝑥 ∈ ( 𝐴𝐵 ) ↦ 𝐶 ) = ( 𝑥 ∈ ( 𝐴𝐵 ) ↦ 𝐶 )
15 1 13 14 fmptdf ( 𝜑 → ( 𝑥 ∈ ( 𝐴𝐵 ) ↦ 𝐶 ) : ( 𝐴𝐵 ) ⟶ ( 0 [,] +∞ ) )
16 2 3 7 4 15 sge0split ( 𝜑 → ( Σ^ ‘ ( 𝑥 ∈ ( 𝐴𝐵 ) ↦ 𝐶 ) ) = ( ( Σ^ ‘ ( ( 𝑥 ∈ ( 𝐴𝐵 ) ↦ 𝐶 ) ↾ 𝐴 ) ) +𝑒 ( Σ^ ‘ ( ( 𝑥 ∈ ( 𝐴𝐵 ) ↦ 𝐶 ) ↾ 𝐵 ) ) ) )
17 ssun1 𝐴 ⊆ ( 𝐴𝐵 )
18 17 resmpti ( ( 𝑥 ∈ ( 𝐴𝐵 ) ↦ 𝐶 ) ↾ 𝐴 ) = ( 𝑥𝐴𝐶 )
19 18 fveq2i ( Σ^ ‘ ( ( 𝑥 ∈ ( 𝐴𝐵 ) ↦ 𝐶 ) ↾ 𝐴 ) ) = ( Σ^ ‘ ( 𝑥𝐴𝐶 ) )
20 ssun2 𝐵 ⊆ ( 𝐴𝐵 )
21 20 resmpti ( ( 𝑥 ∈ ( 𝐴𝐵 ) ↦ 𝐶 ) ↾ 𝐵 ) = ( 𝑥𝐵𝐶 )
22 21 fveq2i ( Σ^ ‘ ( ( 𝑥 ∈ ( 𝐴𝐵 ) ↦ 𝐶 ) ↾ 𝐵 ) ) = ( Σ^ ‘ ( 𝑥𝐵𝐶 ) )
23 19 22 oveq12i ( ( Σ^ ‘ ( ( 𝑥 ∈ ( 𝐴𝐵 ) ↦ 𝐶 ) ↾ 𝐴 ) ) +𝑒 ( Σ^ ‘ ( ( 𝑥 ∈ ( 𝐴𝐵 ) ↦ 𝐶 ) ↾ 𝐵 ) ) ) = ( ( Σ^ ‘ ( 𝑥𝐴𝐶 ) ) +𝑒 ( Σ^ ‘ ( 𝑥𝐵𝐶 ) ) )
24 23 a1i ( 𝜑 → ( ( Σ^ ‘ ( ( 𝑥 ∈ ( 𝐴𝐵 ) ↦ 𝐶 ) ↾ 𝐴 ) ) +𝑒 ( Σ^ ‘ ( ( 𝑥 ∈ ( 𝐴𝐵 ) ↦ 𝐶 ) ↾ 𝐵 ) ) ) = ( ( Σ^ ‘ ( 𝑥𝐴𝐶 ) ) +𝑒 ( Σ^ ‘ ( 𝑥𝐵𝐶 ) ) ) )
25 16 24 eqtrd ( 𝜑 → ( Σ^ ‘ ( 𝑥 ∈ ( 𝐴𝐵 ) ↦ 𝐶 ) ) = ( ( Σ^ ‘ ( 𝑥𝐴𝐶 ) ) +𝑒 ( Σ^ ‘ ( 𝑥𝐵𝐶 ) ) ) )