Step |
Hyp |
Ref |
Expression |
1 |
|
sge0split.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
2 |
|
sge0split.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) |
3 |
|
sge0split.u |
⊢ 𝑈 = ( 𝐴 ∪ 𝐵 ) |
4 |
|
sge0split.in0 |
⊢ ( 𝜑 → ( 𝐴 ∩ 𝐵 ) = ∅ ) |
5 |
|
sge0split.f |
⊢ ( 𝜑 → 𝐹 : 𝑈 ⟶ ( 0 [,] +∞ ) ) |
6 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( Σ^ ‘ 𝐹 ) ∈ ℝ ) → 𝐴 ∈ 𝑉 ) |
7 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( Σ^ ‘ 𝐹 ) ∈ ℝ ) → 𝐵 ∈ 𝑊 ) |
8 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( Σ^ ‘ 𝐹 ) ∈ ℝ ) → ( 𝐴 ∩ 𝐵 ) = ∅ ) |
9 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( Σ^ ‘ 𝐹 ) ∈ ℝ ) → 𝐹 : 𝑈 ⟶ ( 0 [,] +∞ ) ) |
10 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( Σ^ ‘ 𝐹 ) ∈ ℝ ) → ( Σ^ ‘ 𝐹 ) ∈ ℝ ) |
11 |
6 7 3 8 9 10
|
sge0resplit |
⊢ ( ( 𝜑 ∧ ( Σ^ ‘ 𝐹 ) ∈ ℝ ) → ( Σ^ ‘ 𝐹 ) = ( ( Σ^ ‘ ( 𝐹 ↾ 𝐴 ) ) + ( Σ^ ‘ ( 𝐹 ↾ 𝐵 ) ) ) ) |
12 |
|
unexg |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 ∪ 𝐵 ) ∈ V ) |
13 |
1 2 12
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 ∪ 𝐵 ) ∈ V ) |
14 |
3 13
|
eqeltrid |
⊢ ( 𝜑 → 𝑈 ∈ V ) |
15 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ ( Σ^ ‘ 𝐹 ) ∈ ℝ ) → 𝑈 ∈ V ) |
16 |
15 9 10
|
sge0ssre |
⊢ ( ( 𝜑 ∧ ( Σ^ ‘ 𝐹 ) ∈ ℝ ) → ( Σ^ ‘ ( 𝐹 ↾ 𝐴 ) ) ∈ ℝ ) |
17 |
15 9 10
|
sge0ssre |
⊢ ( ( 𝜑 ∧ ( Σ^ ‘ 𝐹 ) ∈ ℝ ) → ( Σ^ ‘ ( 𝐹 ↾ 𝐵 ) ) ∈ ℝ ) |
18 |
|
rexadd |
⊢ ( ( ( Σ^ ‘ ( 𝐹 ↾ 𝐴 ) ) ∈ ℝ ∧ ( Σ^ ‘ ( 𝐹 ↾ 𝐵 ) ) ∈ ℝ ) → ( ( Σ^ ‘ ( 𝐹 ↾ 𝐴 ) ) +𝑒 ( Σ^ ‘ ( 𝐹 ↾ 𝐵 ) ) ) = ( ( Σ^ ‘ ( 𝐹 ↾ 𝐴 ) ) + ( Σ^ ‘ ( 𝐹 ↾ 𝐵 ) ) ) ) |
19 |
16 17 18
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( Σ^ ‘ 𝐹 ) ∈ ℝ ) → ( ( Σ^ ‘ ( 𝐹 ↾ 𝐴 ) ) +𝑒 ( Σ^ ‘ ( 𝐹 ↾ 𝐵 ) ) ) = ( ( Σ^ ‘ ( 𝐹 ↾ 𝐴 ) ) + ( Σ^ ‘ ( 𝐹 ↾ 𝐵 ) ) ) ) |
20 |
19
|
eqcomd |
⊢ ( ( 𝜑 ∧ ( Σ^ ‘ 𝐹 ) ∈ ℝ ) → ( ( Σ^ ‘ ( 𝐹 ↾ 𝐴 ) ) + ( Σ^ ‘ ( 𝐹 ↾ 𝐵 ) ) ) = ( ( Σ^ ‘ ( 𝐹 ↾ 𝐴 ) ) +𝑒 ( Σ^ ‘ ( 𝐹 ↾ 𝐵 ) ) ) ) |
21 |
11 20
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( Σ^ ‘ 𝐹 ) ∈ ℝ ) → ( Σ^ ‘ 𝐹 ) = ( ( Σ^ ‘ ( 𝐹 ↾ 𝐴 ) ) +𝑒 ( Σ^ ‘ ( 𝐹 ↾ 𝐵 ) ) ) ) |
22 |
|
simpl |
⊢ ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐹 ) ∈ ℝ ) → 𝜑 ) |
23 |
|
simpr |
⊢ ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐹 ) ∈ ℝ ) → ¬ ( Σ^ ‘ 𝐹 ) ∈ ℝ ) |
24 |
14 5
|
sge0repnf |
⊢ ( 𝜑 → ( ( Σ^ ‘ 𝐹 ) ∈ ℝ ↔ ¬ ( Σ^ ‘ 𝐹 ) = +∞ ) ) |
25 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐹 ) ∈ ℝ ) → ( ( Σ^ ‘ 𝐹 ) ∈ ℝ ↔ ¬ ( Σ^ ‘ 𝐹 ) = +∞ ) ) |
26 |
23 25
|
mtbid |
⊢ ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐹 ) ∈ ℝ ) → ¬ ¬ ( Σ^ ‘ 𝐹 ) = +∞ ) |
27 |
26
|
notnotrd |
⊢ ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐹 ) ∈ ℝ ) → ( Σ^ ‘ 𝐹 ) = +∞ ) |
28 |
14 5
|
sge0xrcl |
⊢ ( 𝜑 → ( Σ^ ‘ 𝐹 ) ∈ ℝ* ) |
29 |
28
|
adantr |
⊢ ( ( 𝜑 ∧ ( Σ^ ‘ 𝐹 ) = +∞ ) → ( Σ^ ‘ 𝐹 ) ∈ ℝ* ) |
30 |
|
ssun1 |
⊢ 𝐴 ⊆ ( 𝐴 ∪ 𝐵 ) |
31 |
30 3
|
sseqtrri |
⊢ 𝐴 ⊆ 𝑈 |
32 |
31
|
a1i |
⊢ ( 𝜑 → 𝐴 ⊆ 𝑈 ) |
33 |
5 32
|
fssresd |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝐴 ) : 𝐴 ⟶ ( 0 [,] +∞ ) ) |
34 |
1 33
|
sge0xrcl |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝐹 ↾ 𝐴 ) ) ∈ ℝ* ) |
35 |
|
iccssxr |
⊢ ( 0 [,] +∞ ) ⊆ ℝ* |
36 |
|
ssun2 |
⊢ 𝐵 ⊆ ( 𝐴 ∪ 𝐵 ) |
37 |
36 3
|
sseqtrri |
⊢ 𝐵 ⊆ 𝑈 |
38 |
37
|
a1i |
⊢ ( 𝜑 → 𝐵 ⊆ 𝑈 ) |
39 |
5 38
|
fssresd |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝐵 ) : 𝐵 ⟶ ( 0 [,] +∞ ) ) |
40 |
2 39
|
sge0cl |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝐹 ↾ 𝐵 ) ) ∈ ( 0 [,] +∞ ) ) |
41 |
35 40
|
sselid |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝐹 ↾ 𝐵 ) ) ∈ ℝ* ) |
42 |
34 41
|
xaddcld |
⊢ ( 𝜑 → ( ( Σ^ ‘ ( 𝐹 ↾ 𝐴 ) ) +𝑒 ( Σ^ ‘ ( 𝐹 ↾ 𝐵 ) ) ) ∈ ℝ* ) |
43 |
42
|
adantr |
⊢ ( ( 𝜑 ∧ ( Σ^ ‘ 𝐹 ) = +∞ ) → ( ( Σ^ ‘ ( 𝐹 ↾ 𝐴 ) ) +𝑒 ( Σ^ ‘ ( 𝐹 ↾ 𝐵 ) ) ) ∈ ℝ* ) |
44 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
45 |
|
eqid |
⊢ +∞ = +∞ |
46 |
|
xreqle |
⊢ ( ( +∞ ∈ ℝ* ∧ +∞ = +∞ ) → +∞ ≤ +∞ ) |
47 |
44 45 46
|
mp2an |
⊢ +∞ ≤ +∞ |
48 |
47
|
a1i |
⊢ ( ( 𝜑 ∧ +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ) → +∞ ≤ +∞ ) |
49 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ) → 𝑈 ∈ V ) |
50 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ) → 𝐹 : 𝑈 ⟶ ( 0 [,] +∞ ) ) |
51 |
|
rnresss |
⊢ ran ( 𝐹 ↾ 𝐴 ) ⊆ ran 𝐹 |
52 |
51
|
sseli |
⊢ ( +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) → +∞ ∈ ran 𝐹 ) |
53 |
52
|
adantl |
⊢ ( ( 𝜑 ∧ +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ) → +∞ ∈ ran 𝐹 ) |
54 |
49 50 53
|
sge0pnfval |
⊢ ( ( 𝜑 ∧ +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ) → ( Σ^ ‘ 𝐹 ) = +∞ ) |
55 |
|
xrge0neqmnf |
⊢ ( ( Σ^ ‘ ( 𝐹 ↾ 𝐵 ) ) ∈ ( 0 [,] +∞ ) → ( Σ^ ‘ ( 𝐹 ↾ 𝐵 ) ) ≠ -∞ ) |
56 |
40 55
|
syl |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝐹 ↾ 𝐵 ) ) ≠ -∞ ) |
57 |
|
xaddpnf2 |
⊢ ( ( ( Σ^ ‘ ( 𝐹 ↾ 𝐵 ) ) ∈ ℝ* ∧ ( Σ^ ‘ ( 𝐹 ↾ 𝐵 ) ) ≠ -∞ ) → ( +∞ +𝑒 ( Σ^ ‘ ( 𝐹 ↾ 𝐵 ) ) ) = +∞ ) |
58 |
41 56 57
|
syl2anc |
⊢ ( 𝜑 → ( +∞ +𝑒 ( Σ^ ‘ ( 𝐹 ↾ 𝐵 ) ) ) = +∞ ) |
59 |
58
|
eqcomd |
⊢ ( 𝜑 → +∞ = ( +∞ +𝑒 ( Σ^ ‘ ( 𝐹 ↾ 𝐵 ) ) ) ) |
60 |
59
|
adantr |
⊢ ( ( 𝜑 ∧ +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ) → +∞ = ( +∞ +𝑒 ( Σ^ ‘ ( 𝐹 ↾ 𝐵 ) ) ) ) |
61 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ) → 𝐴 ∈ 𝑉 ) |
62 |
33
|
adantr |
⊢ ( ( 𝜑 ∧ +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ) → ( 𝐹 ↾ 𝐴 ) : 𝐴 ⟶ ( 0 [,] +∞ ) ) |
63 |
|
simpr |
⊢ ( ( 𝜑 ∧ +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ) → +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ) |
64 |
61 62 63
|
sge0pnfval |
⊢ ( ( 𝜑 ∧ +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ) → ( Σ^ ‘ ( 𝐹 ↾ 𝐴 ) ) = +∞ ) |
65 |
64
|
oveq1d |
⊢ ( ( 𝜑 ∧ +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ) → ( ( Σ^ ‘ ( 𝐹 ↾ 𝐴 ) ) +𝑒 ( Σ^ ‘ ( 𝐹 ↾ 𝐵 ) ) ) = ( +∞ +𝑒 ( Σ^ ‘ ( 𝐹 ↾ 𝐵 ) ) ) ) |
66 |
60 54 65
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ) → ( Σ^ ‘ 𝐹 ) = ( ( Σ^ ‘ ( 𝐹 ↾ 𝐴 ) ) +𝑒 ( Σ^ ‘ ( 𝐹 ↾ 𝐵 ) ) ) ) |
67 |
66 54
|
eqtr3d |
⊢ ( ( 𝜑 ∧ +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ) → ( ( Σ^ ‘ ( 𝐹 ↾ 𝐴 ) ) +𝑒 ( Σ^ ‘ ( 𝐹 ↾ 𝐵 ) ) ) = +∞ ) |
68 |
54 67
|
breq12d |
⊢ ( ( 𝜑 ∧ +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ) → ( ( Σ^ ‘ 𝐹 ) ≤ ( ( Σ^ ‘ ( 𝐹 ↾ 𝐴 ) ) +𝑒 ( Σ^ ‘ ( 𝐹 ↾ 𝐵 ) ) ) ↔ +∞ ≤ +∞ ) ) |
69 |
48 68
|
mpbird |
⊢ ( ( 𝜑 ∧ +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ) → ( Σ^ ‘ 𝐹 ) ≤ ( ( Σ^ ‘ ( 𝐹 ↾ 𝐴 ) ) +𝑒 ( Σ^ ‘ ( 𝐹 ↾ 𝐵 ) ) ) ) |
70 |
47
|
a1i |
⊢ ( ( 𝜑 ∧ +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) → +∞ ≤ +∞ ) |
71 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) → 𝑈 ∈ V ) |
72 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) → 𝐹 : 𝑈 ⟶ ( 0 [,] +∞ ) ) |
73 |
|
rnresss |
⊢ ran ( 𝐹 ↾ 𝐵 ) ⊆ ran 𝐹 |
74 |
73
|
sseli |
⊢ ( +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) → +∞ ∈ ran 𝐹 ) |
75 |
74
|
adantl |
⊢ ( ( 𝜑 ∧ +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) → +∞ ∈ ran 𝐹 ) |
76 |
71 72 75
|
sge0pnfval |
⊢ ( ( 𝜑 ∧ +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) → ( Σ^ ‘ 𝐹 ) = +∞ ) |
77 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) → 𝐵 ∈ 𝑊 ) |
78 |
39
|
adantr |
⊢ ( ( 𝜑 ∧ +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) → ( 𝐹 ↾ 𝐵 ) : 𝐵 ⟶ ( 0 [,] +∞ ) ) |
79 |
|
simpr |
⊢ ( ( 𝜑 ∧ +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) → +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) |
80 |
77 78 79
|
sge0pnfval |
⊢ ( ( 𝜑 ∧ +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) → ( Σ^ ‘ ( 𝐹 ↾ 𝐵 ) ) = +∞ ) |
81 |
80
|
oveq2d |
⊢ ( ( 𝜑 ∧ +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) → ( ( Σ^ ‘ ( 𝐹 ↾ 𝐴 ) ) +𝑒 ( Σ^ ‘ ( 𝐹 ↾ 𝐵 ) ) ) = ( ( Σ^ ‘ ( 𝐹 ↾ 𝐴 ) ) +𝑒 +∞ ) ) |
82 |
1 33
|
sge0cl |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝐹 ↾ 𝐴 ) ) ∈ ( 0 [,] +∞ ) ) |
83 |
|
xrge0neqmnf |
⊢ ( ( Σ^ ‘ ( 𝐹 ↾ 𝐴 ) ) ∈ ( 0 [,] +∞ ) → ( Σ^ ‘ ( 𝐹 ↾ 𝐴 ) ) ≠ -∞ ) |
84 |
82 83
|
syl |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝐹 ↾ 𝐴 ) ) ≠ -∞ ) |
85 |
|
xaddpnf1 |
⊢ ( ( ( Σ^ ‘ ( 𝐹 ↾ 𝐴 ) ) ∈ ℝ* ∧ ( Σ^ ‘ ( 𝐹 ↾ 𝐴 ) ) ≠ -∞ ) → ( ( Σ^ ‘ ( 𝐹 ↾ 𝐴 ) ) +𝑒 +∞ ) = +∞ ) |
86 |
34 84 85
|
syl2anc |
⊢ ( 𝜑 → ( ( Σ^ ‘ ( 𝐹 ↾ 𝐴 ) ) +𝑒 +∞ ) = +∞ ) |
87 |
86
|
adantr |
⊢ ( ( 𝜑 ∧ +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) → ( ( Σ^ ‘ ( 𝐹 ↾ 𝐴 ) ) +𝑒 +∞ ) = +∞ ) |
88 |
81 87
|
eqtrd |
⊢ ( ( 𝜑 ∧ +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) → ( ( Σ^ ‘ ( 𝐹 ↾ 𝐴 ) ) +𝑒 ( Σ^ ‘ ( 𝐹 ↾ 𝐵 ) ) ) = +∞ ) |
89 |
76 88
|
breq12d |
⊢ ( ( 𝜑 ∧ +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) → ( ( Σ^ ‘ 𝐹 ) ≤ ( ( Σ^ ‘ ( 𝐹 ↾ 𝐴 ) ) +𝑒 ( Σ^ ‘ ( 𝐹 ↾ 𝐵 ) ) ) ↔ +∞ ≤ +∞ ) ) |
90 |
70 89
|
mpbird |
⊢ ( ( 𝜑 ∧ +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) → ( Σ^ ‘ 𝐹 ) ≤ ( ( Σ^ ‘ ( 𝐹 ↾ 𝐴 ) ) +𝑒 ( Σ^ ‘ ( 𝐹 ↾ 𝐵 ) ) ) ) |
91 |
90
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ) ∧ +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) → ( Σ^ ‘ 𝐹 ) ≤ ( ( Σ^ ‘ ( 𝐹 ↾ 𝐴 ) ) +𝑒 ( Σ^ ‘ ( 𝐹 ↾ 𝐵 ) ) ) ) |
92 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ) ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) ∧ 𝑧 ∈ ran ( 𝑥 ∈ ( 𝒫 𝑈 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) ) → 𝑧 ∈ ran ( 𝑥 ∈ ( 𝒫 𝑈 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) ) |
93 |
|
vex |
⊢ 𝑧 ∈ V |
94 |
|
eqid |
⊢ ( 𝑥 ∈ ( 𝒫 𝑈 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) = ( 𝑥 ∈ ( 𝒫 𝑈 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) |
95 |
94
|
elrnmpt |
⊢ ( 𝑧 ∈ V → ( 𝑧 ∈ ran ( 𝑥 ∈ ( 𝒫 𝑈 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) ↔ ∃ 𝑥 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝑧 = Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) ) |
96 |
93 95
|
ax-mp |
⊢ ( 𝑧 ∈ ran ( 𝑥 ∈ ( 𝒫 𝑈 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) ↔ ∃ 𝑥 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝑧 = Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) |
97 |
92 96
|
sylib |
⊢ ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ) ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) ∧ 𝑧 ∈ ran ( 𝑥 ∈ ( 𝒫 𝑈 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) ) → ∃ 𝑥 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝑧 = Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) |
98 |
|
simp3 |
⊢ ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ) ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) ∧ 𝑥 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ 𝑧 = Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) → 𝑧 = Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) |
99 |
|
inss1 |
⊢ ( ( 𝑥 ∩ 𝐴 ) ∩ ( 𝑥 ∩ 𝐵 ) ) ⊆ ( 𝑥 ∩ 𝐴 ) |
100 |
|
inss2 |
⊢ ( 𝑥 ∩ 𝐴 ) ⊆ 𝐴 |
101 |
99 100
|
sstri |
⊢ ( ( 𝑥 ∩ 𝐴 ) ∩ ( 𝑥 ∩ 𝐵 ) ) ⊆ 𝐴 |
102 |
|
inss2 |
⊢ ( ( 𝑥 ∩ 𝐴 ) ∩ ( 𝑥 ∩ 𝐵 ) ) ⊆ ( 𝑥 ∩ 𝐵 ) |
103 |
|
inss2 |
⊢ ( 𝑥 ∩ 𝐵 ) ⊆ 𝐵 |
104 |
102 103
|
sstri |
⊢ ( ( 𝑥 ∩ 𝐴 ) ∩ ( 𝑥 ∩ 𝐵 ) ) ⊆ 𝐵 |
105 |
101 104
|
ssini |
⊢ ( ( 𝑥 ∩ 𝐴 ) ∩ ( 𝑥 ∩ 𝐵 ) ) ⊆ ( 𝐴 ∩ 𝐵 ) |
106 |
105
|
a1i |
⊢ ( 𝜑 → ( ( 𝑥 ∩ 𝐴 ) ∩ ( 𝑥 ∩ 𝐵 ) ) ⊆ ( 𝐴 ∩ 𝐵 ) ) |
107 |
106 4
|
sseqtrd |
⊢ ( 𝜑 → ( ( 𝑥 ∩ 𝐴 ) ∩ ( 𝑥 ∩ 𝐵 ) ) ⊆ ∅ ) |
108 |
|
ss0 |
⊢ ( ( ( 𝑥 ∩ 𝐴 ) ∩ ( 𝑥 ∩ 𝐵 ) ) ⊆ ∅ → ( ( 𝑥 ∩ 𝐴 ) ∩ ( 𝑥 ∩ 𝐵 ) ) = ∅ ) |
109 |
107 108
|
syl |
⊢ ( 𝜑 → ( ( 𝑥 ∩ 𝐴 ) ∩ ( 𝑥 ∩ 𝐵 ) ) = ∅ ) |
110 |
109
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ) ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) ∧ 𝑥 ∈ ( 𝒫 𝑈 ∩ Fin ) ) → ( ( 𝑥 ∩ 𝐴 ) ∩ ( 𝑥 ∩ 𝐵 ) ) = ∅ ) |
111 |
|
indi |
⊢ ( 𝑥 ∩ ( 𝐴 ∪ 𝐵 ) ) = ( ( 𝑥 ∩ 𝐴 ) ∪ ( 𝑥 ∩ 𝐵 ) ) |
112 |
111
|
eqcomi |
⊢ ( ( 𝑥 ∩ 𝐴 ) ∪ ( 𝑥 ∩ 𝐵 ) ) = ( 𝑥 ∩ ( 𝐴 ∪ 𝐵 ) ) |
113 |
112
|
a1i |
⊢ ( 𝑥 ∈ ( 𝒫 𝑈 ∩ Fin ) → ( ( 𝑥 ∩ 𝐴 ) ∪ ( 𝑥 ∩ 𝐵 ) ) = ( 𝑥 ∩ ( 𝐴 ∪ 𝐵 ) ) ) |
114 |
3
|
eqcomi |
⊢ ( 𝐴 ∪ 𝐵 ) = 𝑈 |
115 |
114
|
ineq2i |
⊢ ( 𝑥 ∩ ( 𝐴 ∪ 𝐵 ) ) = ( 𝑥 ∩ 𝑈 ) |
116 |
115
|
a1i |
⊢ ( 𝑥 ∈ ( 𝒫 𝑈 ∩ Fin ) → ( 𝑥 ∩ ( 𝐴 ∪ 𝐵 ) ) = ( 𝑥 ∩ 𝑈 ) ) |
117 |
|
elinel1 |
⊢ ( 𝑥 ∈ ( 𝒫 𝑈 ∩ Fin ) → 𝑥 ∈ 𝒫 𝑈 ) |
118 |
|
elpwi |
⊢ ( 𝑥 ∈ 𝒫 𝑈 → 𝑥 ⊆ 𝑈 ) |
119 |
117 118
|
syl |
⊢ ( 𝑥 ∈ ( 𝒫 𝑈 ∩ Fin ) → 𝑥 ⊆ 𝑈 ) |
120 |
|
df-ss |
⊢ ( 𝑥 ⊆ 𝑈 ↔ ( 𝑥 ∩ 𝑈 ) = 𝑥 ) |
121 |
120
|
biimpi |
⊢ ( 𝑥 ⊆ 𝑈 → ( 𝑥 ∩ 𝑈 ) = 𝑥 ) |
122 |
119 121
|
syl |
⊢ ( 𝑥 ∈ ( 𝒫 𝑈 ∩ Fin ) → ( 𝑥 ∩ 𝑈 ) = 𝑥 ) |
123 |
113 116 122
|
3eqtrrd |
⊢ ( 𝑥 ∈ ( 𝒫 𝑈 ∩ Fin ) → 𝑥 = ( ( 𝑥 ∩ 𝐴 ) ∪ ( 𝑥 ∩ 𝐵 ) ) ) |
124 |
123
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ) ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) ∧ 𝑥 ∈ ( 𝒫 𝑈 ∩ Fin ) ) → 𝑥 = ( ( 𝑥 ∩ 𝐴 ) ∪ ( 𝑥 ∩ 𝐵 ) ) ) |
125 |
|
elinel2 |
⊢ ( 𝑥 ∈ ( 𝒫 𝑈 ∩ Fin ) → 𝑥 ∈ Fin ) |
126 |
125
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ) ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) ∧ 𝑥 ∈ ( 𝒫 𝑈 ∩ Fin ) ) → 𝑥 ∈ Fin ) |
127 |
|
rge0ssre |
⊢ ( 0 [,) +∞ ) ⊆ ℝ |
128 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ) ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) → 𝐹 : 𝑈 ⟶ ( 0 [,] +∞ ) ) |
129 |
|
pm4.56 |
⊢ ( ( ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) ↔ ¬ ( +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ∨ +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) ) |
130 |
129
|
biimpi |
⊢ ( ( ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) → ¬ ( +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ∨ +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) ) |
131 |
|
elun |
⊢ ( +∞ ∈ ( ran ( 𝐹 ↾ 𝐴 ) ∪ ran ( 𝐹 ↾ 𝐵 ) ) ↔ ( +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ∨ +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) ) |
132 |
130 131
|
sylnibr |
⊢ ( ( ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) → ¬ +∞ ∈ ( ran ( 𝐹 ↾ 𝐴 ) ∪ ran ( 𝐹 ↾ 𝐵 ) ) ) |
133 |
132
|
adantll |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ) ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) → ¬ +∞ ∈ ( ran ( 𝐹 ↾ 𝐴 ) ∪ ran ( 𝐹 ↾ 𝐵 ) ) ) |
134 |
|
rnresun |
⊢ ran ( 𝐹 ↾ ( 𝐴 ∪ 𝐵 ) ) = ( ran ( 𝐹 ↾ 𝐴 ) ∪ ran ( 𝐹 ↾ 𝐵 ) ) |
135 |
134
|
eqcomi |
⊢ ( ran ( 𝐹 ↾ 𝐴 ) ∪ ran ( 𝐹 ↾ 𝐵 ) ) = ran ( 𝐹 ↾ ( 𝐴 ∪ 𝐵 ) ) |
136 |
135
|
a1i |
⊢ ( 𝜑 → ( ran ( 𝐹 ↾ 𝐴 ) ∪ ran ( 𝐹 ↾ 𝐵 ) ) = ran ( 𝐹 ↾ ( 𝐴 ∪ 𝐵 ) ) ) |
137 |
114
|
reseq2i |
⊢ ( 𝐹 ↾ ( 𝐴 ∪ 𝐵 ) ) = ( 𝐹 ↾ 𝑈 ) |
138 |
137
|
rneqi |
⊢ ran ( 𝐹 ↾ ( 𝐴 ∪ 𝐵 ) ) = ran ( 𝐹 ↾ 𝑈 ) |
139 |
138
|
a1i |
⊢ ( 𝜑 → ran ( 𝐹 ↾ ( 𝐴 ∪ 𝐵 ) ) = ran ( 𝐹 ↾ 𝑈 ) ) |
140 |
|
ffn |
⊢ ( 𝐹 : 𝑈 ⟶ ( 0 [,] +∞ ) → 𝐹 Fn 𝑈 ) |
141 |
|
fnresdm |
⊢ ( 𝐹 Fn 𝑈 → ( 𝐹 ↾ 𝑈 ) = 𝐹 ) |
142 |
5 140 141
|
3syl |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝑈 ) = 𝐹 ) |
143 |
142
|
rneqd |
⊢ ( 𝜑 → ran ( 𝐹 ↾ 𝑈 ) = ran 𝐹 ) |
144 |
136 139 143
|
3eqtrd |
⊢ ( 𝜑 → ( ran ( 𝐹 ↾ 𝐴 ) ∪ ran ( 𝐹 ↾ 𝐵 ) ) = ran 𝐹 ) |
145 |
144
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ) ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) → ( ran ( 𝐹 ↾ 𝐴 ) ∪ ran ( 𝐹 ↾ 𝐵 ) ) = ran 𝐹 ) |
146 |
133 145
|
neleqtrd |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ) ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) → ¬ +∞ ∈ ran 𝐹 ) |
147 |
128 146
|
fge0iccico |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ) ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) → 𝐹 : 𝑈 ⟶ ( 0 [,) +∞ ) ) |
148 |
147
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ) ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) ∧ 𝑥 ∈ ( 𝒫 𝑈 ∩ Fin ) ) ∧ 𝑦 ∈ 𝑥 ) → 𝐹 : 𝑈 ⟶ ( 0 [,) +∞ ) ) |
149 |
119
|
adantr |
⊢ ( ( 𝑥 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ 𝑦 ∈ 𝑥 ) → 𝑥 ⊆ 𝑈 ) |
150 |
|
simpr |
⊢ ( ( 𝑥 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ 𝑥 ) |
151 |
149 150
|
sseldd |
⊢ ( ( 𝑥 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ 𝑈 ) |
152 |
151
|
adantll |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ) ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) ∧ 𝑥 ∈ ( 𝒫 𝑈 ∩ Fin ) ) ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ 𝑈 ) |
153 |
148 152
|
ffvelrnd |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ) ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) ∧ 𝑥 ∈ ( 𝒫 𝑈 ∩ Fin ) ) ∧ 𝑦 ∈ 𝑥 ) → ( 𝐹 ‘ 𝑦 ) ∈ ( 0 [,) +∞ ) ) |
154 |
127 153
|
sselid |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ) ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) ∧ 𝑥 ∈ ( 𝒫 𝑈 ∩ Fin ) ) ∧ 𝑦 ∈ 𝑥 ) → ( 𝐹 ‘ 𝑦 ) ∈ ℝ ) |
155 |
154
|
recnd |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ) ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) ∧ 𝑥 ∈ ( 𝒫 𝑈 ∩ Fin ) ) ∧ 𝑦 ∈ 𝑥 ) → ( 𝐹 ‘ 𝑦 ) ∈ ℂ ) |
156 |
110 124 126 155
|
fsumsplit |
⊢ ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ) ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) ∧ 𝑥 ∈ ( 𝒫 𝑈 ∩ Fin ) ) → Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) = ( Σ 𝑦 ∈ ( 𝑥 ∩ 𝐴 ) ( 𝐹 ‘ 𝑦 ) + Σ 𝑦 ∈ ( 𝑥 ∩ 𝐵 ) ( 𝐹 ‘ 𝑦 ) ) ) |
157 |
|
infi |
⊢ ( 𝑥 ∈ Fin → ( 𝑥 ∩ 𝐴 ) ∈ Fin ) |
158 |
125 157
|
syl |
⊢ ( 𝑥 ∈ ( 𝒫 𝑈 ∩ Fin ) → ( 𝑥 ∩ 𝐴 ) ∈ Fin ) |
159 |
158
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ) ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) ∧ 𝑥 ∈ ( 𝒫 𝑈 ∩ Fin ) ) → ( 𝑥 ∩ 𝐴 ) ∈ Fin ) |
160 |
|
simpl |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ) ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) ∧ 𝑥 ∈ ( 𝒫 𝑈 ∩ Fin ) ) ∧ 𝑦 ∈ ( 𝑥 ∩ 𝐴 ) ) → ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ) ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) ∧ 𝑥 ∈ ( 𝒫 𝑈 ∩ Fin ) ) ) |
161 |
|
elinel1 |
⊢ ( 𝑦 ∈ ( 𝑥 ∩ 𝐴 ) → 𝑦 ∈ 𝑥 ) |
162 |
161
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ) ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) ∧ 𝑥 ∈ ( 𝒫 𝑈 ∩ Fin ) ) ∧ 𝑦 ∈ ( 𝑥 ∩ 𝐴 ) ) → 𝑦 ∈ 𝑥 ) |
163 |
160 162 154
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ) ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) ∧ 𝑥 ∈ ( 𝒫 𝑈 ∩ Fin ) ) ∧ 𝑦 ∈ ( 𝑥 ∩ 𝐴 ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ℝ ) |
164 |
159 163
|
fsumrecl |
⊢ ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ) ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) ∧ 𝑥 ∈ ( 𝒫 𝑈 ∩ Fin ) ) → Σ 𝑦 ∈ ( 𝑥 ∩ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ∈ ℝ ) |
165 |
|
infi |
⊢ ( 𝑥 ∈ Fin → ( 𝑥 ∩ 𝐵 ) ∈ Fin ) |
166 |
125 165
|
syl |
⊢ ( 𝑥 ∈ ( 𝒫 𝑈 ∩ Fin ) → ( 𝑥 ∩ 𝐵 ) ∈ Fin ) |
167 |
166
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ) ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) ∧ 𝑥 ∈ ( 𝒫 𝑈 ∩ Fin ) ) → ( 𝑥 ∩ 𝐵 ) ∈ Fin ) |
168 |
|
simpl |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ) ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) ∧ 𝑥 ∈ ( 𝒫 𝑈 ∩ Fin ) ) ∧ 𝑦 ∈ ( 𝑥 ∩ 𝐵 ) ) → ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ) ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) ∧ 𝑥 ∈ ( 𝒫 𝑈 ∩ Fin ) ) ) |
169 |
|
elinel1 |
⊢ ( 𝑦 ∈ ( 𝑥 ∩ 𝐵 ) → 𝑦 ∈ 𝑥 ) |
170 |
169
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ) ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) ∧ 𝑥 ∈ ( 𝒫 𝑈 ∩ Fin ) ) ∧ 𝑦 ∈ ( 𝑥 ∩ 𝐵 ) ) → 𝑦 ∈ 𝑥 ) |
171 |
168 170 154
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ) ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) ∧ 𝑥 ∈ ( 𝒫 𝑈 ∩ Fin ) ) ∧ 𝑦 ∈ ( 𝑥 ∩ 𝐵 ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ℝ ) |
172 |
167 171
|
fsumrecl |
⊢ ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ) ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) ∧ 𝑥 ∈ ( 𝒫 𝑈 ∩ Fin ) ) → Σ 𝑦 ∈ ( 𝑥 ∩ 𝐵 ) ( 𝐹 ‘ 𝑦 ) ∈ ℝ ) |
173 |
|
rexadd |
⊢ ( ( Σ 𝑦 ∈ ( 𝑥 ∩ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ∈ ℝ ∧ Σ 𝑦 ∈ ( 𝑥 ∩ 𝐵 ) ( 𝐹 ‘ 𝑦 ) ∈ ℝ ) → ( Σ 𝑦 ∈ ( 𝑥 ∩ 𝐴 ) ( 𝐹 ‘ 𝑦 ) +𝑒 Σ 𝑦 ∈ ( 𝑥 ∩ 𝐵 ) ( 𝐹 ‘ 𝑦 ) ) = ( Σ 𝑦 ∈ ( 𝑥 ∩ 𝐴 ) ( 𝐹 ‘ 𝑦 ) + Σ 𝑦 ∈ ( 𝑥 ∩ 𝐵 ) ( 𝐹 ‘ 𝑦 ) ) ) |
174 |
164 172 173
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ) ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) ∧ 𝑥 ∈ ( 𝒫 𝑈 ∩ Fin ) ) → ( Σ 𝑦 ∈ ( 𝑥 ∩ 𝐴 ) ( 𝐹 ‘ 𝑦 ) +𝑒 Σ 𝑦 ∈ ( 𝑥 ∩ 𝐵 ) ( 𝐹 ‘ 𝑦 ) ) = ( Σ 𝑦 ∈ ( 𝑥 ∩ 𝐴 ) ( 𝐹 ‘ 𝑦 ) + Σ 𝑦 ∈ ( 𝑥 ∩ 𝐵 ) ( 𝐹 ‘ 𝑦 ) ) ) |
175 |
174
|
eqcomd |
⊢ ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ) ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) ∧ 𝑥 ∈ ( 𝒫 𝑈 ∩ Fin ) ) → ( Σ 𝑦 ∈ ( 𝑥 ∩ 𝐴 ) ( 𝐹 ‘ 𝑦 ) + Σ 𝑦 ∈ ( 𝑥 ∩ 𝐵 ) ( 𝐹 ‘ 𝑦 ) ) = ( Σ 𝑦 ∈ ( 𝑥 ∩ 𝐴 ) ( 𝐹 ‘ 𝑦 ) +𝑒 Σ 𝑦 ∈ ( 𝑥 ∩ 𝐵 ) ( 𝐹 ‘ 𝑦 ) ) ) |
176 |
156 175
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ) ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) ∧ 𝑥 ∈ ( 𝒫 𝑈 ∩ Fin ) ) → Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) = ( Σ 𝑦 ∈ ( 𝑥 ∩ 𝐴 ) ( 𝐹 ‘ 𝑦 ) +𝑒 Σ 𝑦 ∈ ( 𝑥 ∩ 𝐵 ) ( 𝐹 ‘ 𝑦 ) ) ) |
177 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
178 |
177 164
|
sselid |
⊢ ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ) ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) ∧ 𝑥 ∈ ( 𝒫 𝑈 ∩ Fin ) ) → Σ 𝑦 ∈ ( 𝑥 ∩ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ∈ ℝ* ) |
179 |
177 172
|
sselid |
⊢ ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ) ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) ∧ 𝑥 ∈ ( 𝒫 𝑈 ∩ Fin ) ) → Σ 𝑦 ∈ ( 𝑥 ∩ 𝐵 ) ( 𝐹 ‘ 𝑦 ) ∈ ℝ* ) |
180 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ) → 𝐴 ∈ 𝑉 ) |
181 |
33
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ) → ( 𝐹 ↾ 𝐴 ) : 𝐴 ⟶ ( 0 [,] +∞ ) ) |
182 |
|
simpr |
⊢ ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ) → ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ) |
183 |
181 182
|
fge0iccico |
⊢ ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ) → ( 𝐹 ↾ 𝐴 ) : 𝐴 ⟶ ( 0 [,) +∞ ) ) |
184 |
180 183
|
sge0reval |
⊢ ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ) → ( Σ^ ‘ ( 𝐹 ↾ 𝐴 ) ) = sup ( ran ( 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑏 ∈ 𝑎 ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑏 ) ) , ℝ* , < ) ) |
185 |
184
|
eqcomd |
⊢ ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ) → sup ( ran ( 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑏 ∈ 𝑎 ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑏 ) ) , ℝ* , < ) = ( Σ^ ‘ ( 𝐹 ↾ 𝐴 ) ) ) |
186 |
34
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ) → ( Σ^ ‘ ( 𝐹 ↾ 𝐴 ) ) ∈ ℝ* ) |
187 |
185 186
|
eqeltrd |
⊢ ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ) → sup ( ran ( 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑏 ∈ 𝑎 ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑏 ) ) , ℝ* , < ) ∈ ℝ* ) |
188 |
187
|
adantr |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ) ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) → sup ( ran ( 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑏 ∈ 𝑎 ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑏 ) ) , ℝ* , < ) ∈ ℝ* ) |
189 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) → 𝐵 ∈ 𝑊 ) |
190 |
39
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) → ( 𝐹 ↾ 𝐵 ) : 𝐵 ⟶ ( 0 [,] +∞ ) ) |
191 |
|
simpr |
⊢ ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) → ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) |
192 |
190 191
|
fge0iccico |
⊢ ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) → ( 𝐹 ↾ 𝐵 ) : 𝐵 ⟶ ( 0 [,) +∞ ) ) |
193 |
189 192
|
sge0reval |
⊢ ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) → ( Σ^ ‘ ( 𝐹 ↾ 𝐵 ) ) = sup ( ran ( 𝑐 ∈ ( 𝒫 𝐵 ∩ Fin ) ↦ Σ 𝑑 ∈ 𝑐 ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑑 ) ) , ℝ* , < ) ) |
194 |
193
|
eqcomd |
⊢ ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) → sup ( ran ( 𝑐 ∈ ( 𝒫 𝐵 ∩ Fin ) ↦ Σ 𝑑 ∈ 𝑐 ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑑 ) ) , ℝ* , < ) = ( Σ^ ‘ ( 𝐹 ↾ 𝐵 ) ) ) |
195 |
41
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) → ( Σ^ ‘ ( 𝐹 ↾ 𝐵 ) ) ∈ ℝ* ) |
196 |
194 195
|
eqeltrd |
⊢ ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) → sup ( ran ( 𝑐 ∈ ( 𝒫 𝐵 ∩ Fin ) ↦ Σ 𝑑 ∈ 𝑐 ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑑 ) ) , ℝ* , < ) ∈ ℝ* ) |
197 |
196
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ) ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) → sup ( ran ( 𝑐 ∈ ( 𝒫 𝐵 ∩ Fin ) ↦ Σ 𝑑 ∈ 𝑐 ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑑 ) ) , ℝ* , < ) ∈ ℝ* ) |
198 |
188 197
|
jca |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ) ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) → ( sup ( ran ( 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑏 ∈ 𝑎 ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑏 ) ) , ℝ* , < ) ∈ ℝ* ∧ sup ( ran ( 𝑐 ∈ ( 𝒫 𝐵 ∩ Fin ) ↦ Σ 𝑑 ∈ 𝑐 ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑑 ) ) , ℝ* , < ) ∈ ℝ* ) ) |
199 |
198
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ) ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) ∧ 𝑥 ∈ ( 𝒫 𝑈 ∩ Fin ) ) → ( sup ( ran ( 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑏 ∈ 𝑎 ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑏 ) ) , ℝ* , < ) ∈ ℝ* ∧ sup ( ran ( 𝑐 ∈ ( 𝒫 𝐵 ∩ Fin ) ↦ Σ 𝑑 ∈ 𝑐 ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑑 ) ) , ℝ* , < ) ∈ ℝ* ) ) |
200 |
178 179 199
|
jca31 |
⊢ ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ) ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) ∧ 𝑥 ∈ ( 𝒫 𝑈 ∩ Fin ) ) → ( ( Σ 𝑦 ∈ ( 𝑥 ∩ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ∈ ℝ* ∧ Σ 𝑦 ∈ ( 𝑥 ∩ 𝐵 ) ( 𝐹 ‘ 𝑦 ) ∈ ℝ* ) ∧ ( sup ( ran ( 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑏 ∈ 𝑎 ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑏 ) ) , ℝ* , < ) ∈ ℝ* ∧ sup ( ran ( 𝑐 ∈ ( 𝒫 𝐵 ∩ Fin ) ↦ Σ 𝑑 ∈ 𝑐 ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑑 ) ) , ℝ* , < ) ∈ ℝ* ) ) ) |
201 |
180
|
adantr |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ) ∧ 𝑥 ∈ ( 𝒫 𝑈 ∩ Fin ) ) → 𝐴 ∈ 𝑉 ) |
202 |
181
|
adantr |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ) ∧ 𝑥 ∈ ( 𝒫 𝑈 ∩ Fin ) ) → ( 𝐹 ↾ 𝐴 ) : 𝐴 ⟶ ( 0 [,] +∞ ) ) |
203 |
182
|
adantr |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ) ∧ 𝑥 ∈ ( 𝒫 𝑈 ∩ Fin ) ) → ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ) |
204 |
202 203
|
fge0iccico |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ) ∧ 𝑥 ∈ ( 𝒫 𝑈 ∩ Fin ) ) → ( 𝐹 ↾ 𝐴 ) : 𝐴 ⟶ ( 0 [,) +∞ ) ) |
205 |
100
|
a1i |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ) ∧ 𝑥 ∈ ( 𝒫 𝑈 ∩ Fin ) ) → ( 𝑥 ∩ 𝐴 ) ⊆ 𝐴 ) |
206 |
158
|
adantl |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ) ∧ 𝑥 ∈ ( 𝒫 𝑈 ∩ Fin ) ) → ( 𝑥 ∩ 𝐴 ) ∈ Fin ) |
207 |
201 204 205 206
|
fsumlesge0 |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ) ∧ 𝑥 ∈ ( 𝒫 𝑈 ∩ Fin ) ) → Σ 𝑦 ∈ ( 𝑥 ∩ 𝐴 ) ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) ≤ ( Σ^ ‘ ( 𝐹 ↾ 𝐴 ) ) ) |
208 |
100
|
sseli |
⊢ ( 𝑦 ∈ ( 𝑥 ∩ 𝐴 ) → 𝑦 ∈ 𝐴 ) |
209 |
|
fvres |
⊢ ( 𝑦 ∈ 𝐴 → ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) |
210 |
208 209
|
syl |
⊢ ( 𝑦 ∈ ( 𝑥 ∩ 𝐴 ) → ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) |
211 |
210
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ) ∧ 𝑥 ∈ ( 𝒫 𝑈 ∩ Fin ) ) ∧ 𝑦 ∈ ( 𝑥 ∩ 𝐴 ) ) → ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) |
212 |
211
|
sumeq2dv |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ) ∧ 𝑥 ∈ ( 𝒫 𝑈 ∩ Fin ) ) → Σ 𝑦 ∈ ( 𝑥 ∩ 𝐴 ) ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) = Σ 𝑦 ∈ ( 𝑥 ∩ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) |
213 |
184
|
adantr |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ) ∧ 𝑥 ∈ ( 𝒫 𝑈 ∩ Fin ) ) → ( Σ^ ‘ ( 𝐹 ↾ 𝐴 ) ) = sup ( ran ( 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑏 ∈ 𝑎 ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑏 ) ) , ℝ* , < ) ) |
214 |
212 213
|
breq12d |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ) ∧ 𝑥 ∈ ( 𝒫 𝑈 ∩ Fin ) ) → ( Σ 𝑦 ∈ ( 𝑥 ∩ 𝐴 ) ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) ≤ ( Σ^ ‘ ( 𝐹 ↾ 𝐴 ) ) ↔ Σ 𝑦 ∈ ( 𝑥 ∩ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ≤ sup ( ran ( 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑏 ∈ 𝑎 ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑏 ) ) , ℝ* , < ) ) ) |
215 |
207 214
|
mpbid |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ) ∧ 𝑥 ∈ ( 𝒫 𝑈 ∩ Fin ) ) → Σ 𝑦 ∈ ( 𝑥 ∩ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ≤ sup ( ran ( 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑏 ∈ 𝑎 ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑏 ) ) , ℝ* , < ) ) |
216 |
215
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ) ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) ∧ 𝑥 ∈ ( 𝒫 𝑈 ∩ Fin ) ) → Σ 𝑦 ∈ ( 𝑥 ∩ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ≤ sup ( ran ( 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑏 ∈ 𝑎 ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑏 ) ) , ℝ* , < ) ) |
217 |
189
|
adantr |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) ∧ 𝑥 ∈ ( 𝒫 𝑈 ∩ Fin ) ) → 𝐵 ∈ 𝑊 ) |
218 |
190
|
adantr |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) ∧ 𝑥 ∈ ( 𝒫 𝑈 ∩ Fin ) ) → ( 𝐹 ↾ 𝐵 ) : 𝐵 ⟶ ( 0 [,] +∞ ) ) |
219 |
191
|
adantr |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) ∧ 𝑥 ∈ ( 𝒫 𝑈 ∩ Fin ) ) → ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) |
220 |
218 219
|
fge0iccico |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) ∧ 𝑥 ∈ ( 𝒫 𝑈 ∩ Fin ) ) → ( 𝐹 ↾ 𝐵 ) : 𝐵 ⟶ ( 0 [,) +∞ ) ) |
221 |
103
|
a1i |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) ∧ 𝑥 ∈ ( 𝒫 𝑈 ∩ Fin ) ) → ( 𝑥 ∩ 𝐵 ) ⊆ 𝐵 ) |
222 |
166
|
adantl |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) ∧ 𝑥 ∈ ( 𝒫 𝑈 ∩ Fin ) ) → ( 𝑥 ∩ 𝐵 ) ∈ Fin ) |
223 |
217 220 221 222
|
fsumlesge0 |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) ∧ 𝑥 ∈ ( 𝒫 𝑈 ∩ Fin ) ) → Σ 𝑦 ∈ ( 𝑥 ∩ 𝐵 ) ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑦 ) ≤ ( Σ^ ‘ ( 𝐹 ↾ 𝐵 ) ) ) |
224 |
103
|
sseli |
⊢ ( 𝑦 ∈ ( 𝑥 ∩ 𝐵 ) → 𝑦 ∈ 𝐵 ) |
225 |
|
fvres |
⊢ ( 𝑦 ∈ 𝐵 → ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) |
226 |
224 225
|
syl |
⊢ ( 𝑦 ∈ ( 𝑥 ∩ 𝐵 ) → ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) |
227 |
226
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) ∧ 𝑥 ∈ ( 𝒫 𝑈 ∩ Fin ) ) ∧ 𝑦 ∈ ( 𝑥 ∩ 𝐵 ) ) → ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) |
228 |
227
|
sumeq2dv |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) ∧ 𝑥 ∈ ( 𝒫 𝑈 ∩ Fin ) ) → Σ 𝑦 ∈ ( 𝑥 ∩ 𝐵 ) ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑦 ) = Σ 𝑦 ∈ ( 𝑥 ∩ 𝐵 ) ( 𝐹 ‘ 𝑦 ) ) |
229 |
193
|
adantr |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) ∧ 𝑥 ∈ ( 𝒫 𝑈 ∩ Fin ) ) → ( Σ^ ‘ ( 𝐹 ↾ 𝐵 ) ) = sup ( ran ( 𝑐 ∈ ( 𝒫 𝐵 ∩ Fin ) ↦ Σ 𝑑 ∈ 𝑐 ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑑 ) ) , ℝ* , < ) ) |
230 |
228 229
|
breq12d |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) ∧ 𝑥 ∈ ( 𝒫 𝑈 ∩ Fin ) ) → ( Σ 𝑦 ∈ ( 𝑥 ∩ 𝐵 ) ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑦 ) ≤ ( Σ^ ‘ ( 𝐹 ↾ 𝐵 ) ) ↔ Σ 𝑦 ∈ ( 𝑥 ∩ 𝐵 ) ( 𝐹 ‘ 𝑦 ) ≤ sup ( ran ( 𝑐 ∈ ( 𝒫 𝐵 ∩ Fin ) ↦ Σ 𝑑 ∈ 𝑐 ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑑 ) ) , ℝ* , < ) ) ) |
231 |
223 230
|
mpbid |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) ∧ 𝑥 ∈ ( 𝒫 𝑈 ∩ Fin ) ) → Σ 𝑦 ∈ ( 𝑥 ∩ 𝐵 ) ( 𝐹 ‘ 𝑦 ) ≤ sup ( ran ( 𝑐 ∈ ( 𝒫 𝐵 ∩ Fin ) ↦ Σ 𝑑 ∈ 𝑐 ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑑 ) ) , ℝ* , < ) ) |
232 |
231
|
adantllr |
⊢ ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ) ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) ∧ 𝑥 ∈ ( 𝒫 𝑈 ∩ Fin ) ) → Σ 𝑦 ∈ ( 𝑥 ∩ 𝐵 ) ( 𝐹 ‘ 𝑦 ) ≤ sup ( ran ( 𝑐 ∈ ( 𝒫 𝐵 ∩ Fin ) ↦ Σ 𝑑 ∈ 𝑐 ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑑 ) ) , ℝ* , < ) ) |
233 |
216 232
|
jca |
⊢ ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ) ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) ∧ 𝑥 ∈ ( 𝒫 𝑈 ∩ Fin ) ) → ( Σ 𝑦 ∈ ( 𝑥 ∩ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ≤ sup ( ran ( 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑏 ∈ 𝑎 ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑏 ) ) , ℝ* , < ) ∧ Σ 𝑦 ∈ ( 𝑥 ∩ 𝐵 ) ( 𝐹 ‘ 𝑦 ) ≤ sup ( ran ( 𝑐 ∈ ( 𝒫 𝐵 ∩ Fin ) ↦ Σ 𝑑 ∈ 𝑐 ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑑 ) ) , ℝ* , < ) ) ) |
234 |
|
xle2add |
⊢ ( ( ( Σ 𝑦 ∈ ( 𝑥 ∩ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ∈ ℝ* ∧ Σ 𝑦 ∈ ( 𝑥 ∩ 𝐵 ) ( 𝐹 ‘ 𝑦 ) ∈ ℝ* ) ∧ ( sup ( ran ( 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑏 ∈ 𝑎 ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑏 ) ) , ℝ* , < ) ∈ ℝ* ∧ sup ( ran ( 𝑐 ∈ ( 𝒫 𝐵 ∩ Fin ) ↦ Σ 𝑑 ∈ 𝑐 ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑑 ) ) , ℝ* , < ) ∈ ℝ* ) ) → ( ( Σ 𝑦 ∈ ( 𝑥 ∩ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ≤ sup ( ran ( 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑏 ∈ 𝑎 ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑏 ) ) , ℝ* , < ) ∧ Σ 𝑦 ∈ ( 𝑥 ∩ 𝐵 ) ( 𝐹 ‘ 𝑦 ) ≤ sup ( ran ( 𝑐 ∈ ( 𝒫 𝐵 ∩ Fin ) ↦ Σ 𝑑 ∈ 𝑐 ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑑 ) ) , ℝ* , < ) ) → ( Σ 𝑦 ∈ ( 𝑥 ∩ 𝐴 ) ( 𝐹 ‘ 𝑦 ) +𝑒 Σ 𝑦 ∈ ( 𝑥 ∩ 𝐵 ) ( 𝐹 ‘ 𝑦 ) ) ≤ ( sup ( ran ( 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑏 ∈ 𝑎 ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑏 ) ) , ℝ* , < ) +𝑒 sup ( ran ( 𝑐 ∈ ( 𝒫 𝐵 ∩ Fin ) ↦ Σ 𝑑 ∈ 𝑐 ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑑 ) ) , ℝ* , < ) ) ) ) |
235 |
200 233 234
|
sylc |
⊢ ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ) ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) ∧ 𝑥 ∈ ( 𝒫 𝑈 ∩ Fin ) ) → ( Σ 𝑦 ∈ ( 𝑥 ∩ 𝐴 ) ( 𝐹 ‘ 𝑦 ) +𝑒 Σ 𝑦 ∈ ( 𝑥 ∩ 𝐵 ) ( 𝐹 ‘ 𝑦 ) ) ≤ ( sup ( ran ( 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑏 ∈ 𝑎 ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑏 ) ) , ℝ* , < ) +𝑒 sup ( ran ( 𝑐 ∈ ( 𝒫 𝐵 ∩ Fin ) ↦ Σ 𝑑 ∈ 𝑐 ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑑 ) ) , ℝ* , < ) ) ) |
236 |
176 235
|
eqbrtrd |
⊢ ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ) ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) ∧ 𝑥 ∈ ( 𝒫 𝑈 ∩ Fin ) ) → Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ≤ ( sup ( ran ( 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑏 ∈ 𝑎 ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑏 ) ) , ℝ* , < ) +𝑒 sup ( ran ( 𝑐 ∈ ( 𝒫 𝐵 ∩ Fin ) ↦ Σ 𝑑 ∈ 𝑐 ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑑 ) ) , ℝ* , < ) ) ) |
237 |
236
|
3adant3 |
⊢ ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ) ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) ∧ 𝑥 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ 𝑧 = Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) → Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ≤ ( sup ( ran ( 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑏 ∈ 𝑎 ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑏 ) ) , ℝ* , < ) +𝑒 sup ( ran ( 𝑐 ∈ ( 𝒫 𝐵 ∩ Fin ) ↦ Σ 𝑑 ∈ 𝑐 ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑑 ) ) , ℝ* , < ) ) ) |
238 |
98 237
|
eqbrtrd |
⊢ ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ) ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) ∧ 𝑥 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ 𝑧 = Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) → 𝑧 ≤ ( sup ( ran ( 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑏 ∈ 𝑎 ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑏 ) ) , ℝ* , < ) +𝑒 sup ( ran ( 𝑐 ∈ ( 𝒫 𝐵 ∩ Fin ) ↦ Σ 𝑑 ∈ 𝑐 ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑑 ) ) , ℝ* , < ) ) ) |
239 |
238
|
3exp |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ) ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) → ( 𝑥 ∈ ( 𝒫 𝑈 ∩ Fin ) → ( 𝑧 = Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) → 𝑧 ≤ ( sup ( ran ( 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑏 ∈ 𝑎 ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑏 ) ) , ℝ* , < ) +𝑒 sup ( ran ( 𝑐 ∈ ( 𝒫 𝐵 ∩ Fin ) ↦ Σ 𝑑 ∈ 𝑐 ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑑 ) ) , ℝ* , < ) ) ) ) ) |
240 |
239
|
rexlimdv |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ) ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) → ( ∃ 𝑥 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝑧 = Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) → 𝑧 ≤ ( sup ( ran ( 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑏 ∈ 𝑎 ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑏 ) ) , ℝ* , < ) +𝑒 sup ( ran ( 𝑐 ∈ ( 𝒫 𝐵 ∩ Fin ) ↦ Σ 𝑑 ∈ 𝑐 ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑑 ) ) , ℝ* , < ) ) ) ) |
241 |
240
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ) ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) ∧ 𝑧 ∈ ran ( 𝑥 ∈ ( 𝒫 𝑈 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) ) → ( ∃ 𝑥 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝑧 = Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) → 𝑧 ≤ ( sup ( ran ( 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑏 ∈ 𝑎 ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑏 ) ) , ℝ* , < ) +𝑒 sup ( ran ( 𝑐 ∈ ( 𝒫 𝐵 ∩ Fin ) ↦ Σ 𝑑 ∈ 𝑐 ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑑 ) ) , ℝ* , < ) ) ) ) |
242 |
97 241
|
mpd |
⊢ ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ) ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) ∧ 𝑧 ∈ ran ( 𝑥 ∈ ( 𝒫 𝑈 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) ) → 𝑧 ≤ ( sup ( ran ( 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑏 ∈ 𝑎 ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑏 ) ) , ℝ* , < ) +𝑒 sup ( ran ( 𝑐 ∈ ( 𝒫 𝐵 ∩ Fin ) ↦ Σ 𝑑 ∈ 𝑐 ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑑 ) ) , ℝ* , < ) ) ) |
243 |
242
|
ralrimiva |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ) ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) → ∀ 𝑧 ∈ ran ( 𝑥 ∈ ( 𝒫 𝑈 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) 𝑧 ≤ ( sup ( ran ( 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑏 ∈ 𝑎 ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑏 ) ) , ℝ* , < ) +𝑒 sup ( ran ( 𝑐 ∈ ( 𝒫 𝐵 ∩ Fin ) ↦ Σ 𝑑 ∈ 𝑐 ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑑 ) ) , ℝ* , < ) ) ) |
244 |
147
|
sge0rnre |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ) ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) → ran ( 𝑥 ∈ ( 𝒫 𝑈 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) ⊆ ℝ ) |
245 |
177
|
a1i |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ) ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) → ℝ ⊆ ℝ* ) |
246 |
244 245
|
sstrd |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ) ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) → ran ( 𝑥 ∈ ( 𝒫 𝑈 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) ⊆ ℝ* ) |
247 |
188 197
|
xaddcld |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ) ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) → ( sup ( ran ( 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑏 ∈ 𝑎 ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑏 ) ) , ℝ* , < ) +𝑒 sup ( ran ( 𝑐 ∈ ( 𝒫 𝐵 ∩ Fin ) ↦ Σ 𝑑 ∈ 𝑐 ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑑 ) ) , ℝ* , < ) ) ∈ ℝ* ) |
248 |
|
supxrleub |
⊢ ( ( ran ( 𝑥 ∈ ( 𝒫 𝑈 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) ⊆ ℝ* ∧ ( sup ( ran ( 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑏 ∈ 𝑎 ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑏 ) ) , ℝ* , < ) +𝑒 sup ( ran ( 𝑐 ∈ ( 𝒫 𝐵 ∩ Fin ) ↦ Σ 𝑑 ∈ 𝑐 ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑑 ) ) , ℝ* , < ) ) ∈ ℝ* ) → ( sup ( ran ( 𝑥 ∈ ( 𝒫 𝑈 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) , ℝ* , < ) ≤ ( sup ( ran ( 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑏 ∈ 𝑎 ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑏 ) ) , ℝ* , < ) +𝑒 sup ( ran ( 𝑐 ∈ ( 𝒫 𝐵 ∩ Fin ) ↦ Σ 𝑑 ∈ 𝑐 ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑑 ) ) , ℝ* , < ) ) ↔ ∀ 𝑧 ∈ ran ( 𝑥 ∈ ( 𝒫 𝑈 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) 𝑧 ≤ ( sup ( ran ( 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑏 ∈ 𝑎 ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑏 ) ) , ℝ* , < ) +𝑒 sup ( ran ( 𝑐 ∈ ( 𝒫 𝐵 ∩ Fin ) ↦ Σ 𝑑 ∈ 𝑐 ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑑 ) ) , ℝ* , < ) ) ) ) |
249 |
246 247 248
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ) ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) → ( sup ( ran ( 𝑥 ∈ ( 𝒫 𝑈 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) , ℝ* , < ) ≤ ( sup ( ran ( 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑏 ∈ 𝑎 ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑏 ) ) , ℝ* , < ) +𝑒 sup ( ran ( 𝑐 ∈ ( 𝒫 𝐵 ∩ Fin ) ↦ Σ 𝑑 ∈ 𝑐 ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑑 ) ) , ℝ* , < ) ) ↔ ∀ 𝑧 ∈ ran ( 𝑥 ∈ ( 𝒫 𝑈 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) 𝑧 ≤ ( sup ( ran ( 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑏 ∈ 𝑎 ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑏 ) ) , ℝ* , < ) +𝑒 sup ( ran ( 𝑐 ∈ ( 𝒫 𝐵 ∩ Fin ) ↦ Σ 𝑑 ∈ 𝑐 ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑑 ) ) , ℝ* , < ) ) ) ) |
250 |
243 249
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ) ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) → sup ( ran ( 𝑥 ∈ ( 𝒫 𝑈 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) , ℝ* , < ) ≤ ( sup ( ran ( 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑏 ∈ 𝑎 ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑏 ) ) , ℝ* , < ) +𝑒 sup ( ran ( 𝑐 ∈ ( 𝒫 𝐵 ∩ Fin ) ↦ Σ 𝑑 ∈ 𝑐 ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑑 ) ) , ℝ* , < ) ) ) |
251 |
14
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ) ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) → 𝑈 ∈ V ) |
252 |
251 147
|
sge0reval |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ) ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) → ( Σ^ ‘ 𝐹 ) = sup ( ran ( 𝑥 ∈ ( 𝒫 𝑈 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) , ℝ* , < ) ) |
253 |
184
|
adantr |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ) ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) → ( Σ^ ‘ ( 𝐹 ↾ 𝐴 ) ) = sup ( ran ( 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑏 ∈ 𝑎 ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑏 ) ) , ℝ* , < ) ) |
254 |
193
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ) ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) → ( Σ^ ‘ ( 𝐹 ↾ 𝐵 ) ) = sup ( ran ( 𝑐 ∈ ( 𝒫 𝐵 ∩ Fin ) ↦ Σ 𝑑 ∈ 𝑐 ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑑 ) ) , ℝ* , < ) ) |
255 |
253 254
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ) ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) → ( ( Σ^ ‘ ( 𝐹 ↾ 𝐴 ) ) +𝑒 ( Σ^ ‘ ( 𝐹 ↾ 𝐵 ) ) ) = ( sup ( ran ( 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑏 ∈ 𝑎 ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑏 ) ) , ℝ* , < ) +𝑒 sup ( ran ( 𝑐 ∈ ( 𝒫 𝐵 ∩ Fin ) ↦ Σ 𝑑 ∈ 𝑐 ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑑 ) ) , ℝ* , < ) ) ) |
256 |
250 252 255
|
3brtr4d |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ) ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐵 ) ) → ( Σ^ ‘ 𝐹 ) ≤ ( ( Σ^ ‘ ( 𝐹 ↾ 𝐴 ) ) +𝑒 ( Σ^ ‘ ( 𝐹 ↾ 𝐵 ) ) ) ) |
257 |
91 256
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝐹 ↾ 𝐴 ) ) → ( Σ^ ‘ 𝐹 ) ≤ ( ( Σ^ ‘ ( 𝐹 ↾ 𝐴 ) ) +𝑒 ( Σ^ ‘ ( 𝐹 ↾ 𝐵 ) ) ) ) |
258 |
69 257
|
pm2.61dan |
⊢ ( 𝜑 → ( Σ^ ‘ 𝐹 ) ≤ ( ( Σ^ ‘ ( 𝐹 ↾ 𝐴 ) ) +𝑒 ( Σ^ ‘ ( 𝐹 ↾ 𝐵 ) ) ) ) |
259 |
258
|
adantr |
⊢ ( ( 𝜑 ∧ ( Σ^ ‘ 𝐹 ) = +∞ ) → ( Σ^ ‘ 𝐹 ) ≤ ( ( Σ^ ‘ ( 𝐹 ↾ 𝐴 ) ) +𝑒 ( Σ^ ‘ ( 𝐹 ↾ 𝐵 ) ) ) ) |
260 |
|
pnfge |
⊢ ( ( ( Σ^ ‘ ( 𝐹 ↾ 𝐴 ) ) +𝑒 ( Σ^ ‘ ( 𝐹 ↾ 𝐵 ) ) ) ∈ ℝ* → ( ( Σ^ ‘ ( 𝐹 ↾ 𝐴 ) ) +𝑒 ( Σ^ ‘ ( 𝐹 ↾ 𝐵 ) ) ) ≤ +∞ ) |
261 |
42 260
|
syl |
⊢ ( 𝜑 → ( ( Σ^ ‘ ( 𝐹 ↾ 𝐴 ) ) +𝑒 ( Σ^ ‘ ( 𝐹 ↾ 𝐵 ) ) ) ≤ +∞ ) |
262 |
261
|
adantr |
⊢ ( ( 𝜑 ∧ ( Σ^ ‘ 𝐹 ) = +∞ ) → ( ( Σ^ ‘ ( 𝐹 ↾ 𝐴 ) ) +𝑒 ( Σ^ ‘ ( 𝐹 ↾ 𝐵 ) ) ) ≤ +∞ ) |
263 |
|
id |
⊢ ( ( Σ^ ‘ 𝐹 ) = +∞ → ( Σ^ ‘ 𝐹 ) = +∞ ) |
264 |
263
|
eqcomd |
⊢ ( ( Σ^ ‘ 𝐹 ) = +∞ → +∞ = ( Σ^ ‘ 𝐹 ) ) |
265 |
264
|
adantl |
⊢ ( ( 𝜑 ∧ ( Σ^ ‘ 𝐹 ) = +∞ ) → +∞ = ( Σ^ ‘ 𝐹 ) ) |
266 |
262 265
|
breqtrd |
⊢ ( ( 𝜑 ∧ ( Σ^ ‘ 𝐹 ) = +∞ ) → ( ( Σ^ ‘ ( 𝐹 ↾ 𝐴 ) ) +𝑒 ( Σ^ ‘ ( 𝐹 ↾ 𝐵 ) ) ) ≤ ( Σ^ ‘ 𝐹 ) ) |
267 |
29 43 259 266
|
xrletrid |
⊢ ( ( 𝜑 ∧ ( Σ^ ‘ 𝐹 ) = +∞ ) → ( Σ^ ‘ 𝐹 ) = ( ( Σ^ ‘ ( 𝐹 ↾ 𝐴 ) ) +𝑒 ( Σ^ ‘ ( 𝐹 ↾ 𝐵 ) ) ) ) |
268 |
22 27 267
|
syl2anc |
⊢ ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐹 ) ∈ ℝ ) → ( Σ^ ‘ 𝐹 ) = ( ( Σ^ ‘ ( 𝐹 ↾ 𝐴 ) ) +𝑒 ( Σ^ ‘ ( 𝐹 ↾ 𝐵 ) ) ) ) |
269 |
21 268
|
pm2.61dan |
⊢ ( 𝜑 → ( Σ^ ‘ 𝐹 ) = ( ( Σ^ ‘ ( 𝐹 ↾ 𝐴 ) ) +𝑒 ( Σ^ ‘ ( 𝐹 ↾ 𝐵 ) ) ) ) |