Metamath Proof Explorer


Theorem sge0split

Description: Split a sum of nonnegative extended reals into two parts. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses sge0split.a φ A V
sge0split.b φ B W
sge0split.u U = A B
sge0split.in0 φ A B =
sge0split.f φ F : U 0 +∞
Assertion sge0split φ sum^ F = sum^ F A + 𝑒 sum^ F B

Proof

Step Hyp Ref Expression
1 sge0split.a φ A V
2 sge0split.b φ B W
3 sge0split.u U = A B
4 sge0split.in0 φ A B =
5 sge0split.f φ F : U 0 +∞
6 1 adantr φ sum^ F A V
7 2 adantr φ sum^ F B W
8 4 adantr φ sum^ F A B =
9 5 adantr φ sum^ F F : U 0 +∞
10 simpr φ sum^ F sum^ F
11 6 7 3 8 9 10 sge0resplit φ sum^ F sum^ F = sum^ F A + sum^ F B
12 unexg A V B W A B V
13 1 2 12 syl2anc φ A B V
14 3 13 eqeltrid φ U V
15 14 adantr φ sum^ F U V
16 15 9 10 sge0ssre φ sum^ F sum^ F A
17 15 9 10 sge0ssre φ sum^ F sum^ F B
18 rexadd sum^ F A sum^ F B sum^ F A + 𝑒 sum^ F B = sum^ F A + sum^ F B
19 16 17 18 syl2anc φ sum^ F sum^ F A + 𝑒 sum^ F B = sum^ F A + sum^ F B
20 19 eqcomd φ sum^ F sum^ F A + sum^ F B = sum^ F A + 𝑒 sum^ F B
21 11 20 eqtrd φ sum^ F sum^ F = sum^ F A + 𝑒 sum^ F B
22 simpl φ ¬ sum^ F φ
23 simpr φ ¬ sum^ F ¬ sum^ F
24 14 5 sge0repnf φ sum^ F ¬ sum^ F = +∞
25 24 adantr φ ¬ sum^ F sum^ F ¬ sum^ F = +∞
26 23 25 mtbid φ ¬ sum^ F ¬ ¬ sum^ F = +∞
27 26 notnotrd φ ¬ sum^ F sum^ F = +∞
28 14 5 sge0xrcl φ sum^ F *
29 28 adantr φ sum^ F = +∞ sum^ F *
30 ssun1 A A B
31 30 3 sseqtrri A U
32 31 a1i φ A U
33 5 32 fssresd φ F A : A 0 +∞
34 1 33 sge0xrcl φ sum^ F A *
35 iccssxr 0 +∞ *
36 ssun2 B A B
37 36 3 sseqtrri B U
38 37 a1i φ B U
39 5 38 fssresd φ F B : B 0 +∞
40 2 39 sge0cl φ sum^ F B 0 +∞
41 35 40 sselid φ sum^ F B *
42 34 41 xaddcld φ sum^ F A + 𝑒 sum^ F B *
43 42 adantr φ sum^ F = +∞ sum^ F A + 𝑒 sum^ F B *
44 pnfxr +∞ *
45 eqid +∞ = +∞
46 xreqle +∞ * +∞ = +∞ +∞ +∞
47 44 45 46 mp2an +∞ +∞
48 47 a1i φ +∞ ran F A +∞ +∞
49 14 adantr φ +∞ ran F A U V
50 5 adantr φ +∞ ran F A F : U 0 +∞
51 rnresss ran F A ran F
52 51 sseli +∞ ran F A +∞ ran F
53 52 adantl φ +∞ ran F A +∞ ran F
54 49 50 53 sge0pnfval φ +∞ ran F A sum^ F = +∞
55 xrge0neqmnf sum^ F B 0 +∞ sum^ F B −∞
56 40 55 syl φ sum^ F B −∞
57 xaddpnf2 sum^ F B * sum^ F B −∞ +∞ + 𝑒 sum^ F B = +∞
58 41 56 57 syl2anc φ +∞ + 𝑒 sum^ F B = +∞
59 58 eqcomd φ +∞ = +∞ + 𝑒 sum^ F B
60 59 adantr φ +∞ ran F A +∞ = +∞ + 𝑒 sum^ F B
61 1 adantr φ +∞ ran F A A V
62 33 adantr φ +∞ ran F A F A : A 0 +∞
63 simpr φ +∞ ran F A +∞ ran F A
64 61 62 63 sge0pnfval φ +∞ ran F A sum^ F A = +∞
65 64 oveq1d φ +∞ ran F A sum^ F A + 𝑒 sum^ F B = +∞ + 𝑒 sum^ F B
66 60 54 65 3eqtr4d φ +∞ ran F A sum^ F = sum^ F A + 𝑒 sum^ F B
67 66 54 eqtr3d φ +∞ ran F A sum^ F A + 𝑒 sum^ F B = +∞
68 54 67 breq12d φ +∞ ran F A sum^ F sum^ F A + 𝑒 sum^ F B +∞ +∞
69 48 68 mpbird φ +∞ ran F A sum^ F sum^ F A + 𝑒 sum^ F B
70 47 a1i φ +∞ ran F B +∞ +∞
71 14 adantr φ +∞ ran F B U V
72 5 adantr φ +∞ ran F B F : U 0 +∞
73 rnresss ran F B ran F
74 73 sseli +∞ ran F B +∞ ran F
75 74 adantl φ +∞ ran F B +∞ ran F
76 71 72 75 sge0pnfval φ +∞ ran F B sum^ F = +∞
77 2 adantr φ +∞ ran F B B W
78 39 adantr φ +∞ ran F B F B : B 0 +∞
79 simpr φ +∞ ran F B +∞ ran F B
80 77 78 79 sge0pnfval φ +∞ ran F B sum^ F B = +∞
81 80 oveq2d φ +∞ ran F B sum^ F A + 𝑒 sum^ F B = sum^ F A + 𝑒 +∞
82 1 33 sge0cl φ sum^ F A 0 +∞
83 xrge0neqmnf sum^ F A 0 +∞ sum^ F A −∞
84 82 83 syl φ sum^ F A −∞
85 xaddpnf1 sum^ F A * sum^ F A −∞ sum^ F A + 𝑒 +∞ = +∞
86 34 84 85 syl2anc φ sum^ F A + 𝑒 +∞ = +∞
87 86 adantr φ +∞ ran F B sum^ F A + 𝑒 +∞ = +∞
88 81 87 eqtrd φ +∞ ran F B sum^ F A + 𝑒 sum^ F B = +∞
89 76 88 breq12d φ +∞ ran F B sum^ F sum^ F A + 𝑒 sum^ F B +∞ +∞
90 70 89 mpbird φ +∞ ran F B sum^ F sum^ F A + 𝑒 sum^ F B
91 90 adantlr φ ¬ +∞ ran F A +∞ ran F B sum^ F sum^ F A + 𝑒 sum^ F B
92 simpr φ ¬ +∞ ran F A ¬ +∞ ran F B z ran x 𝒫 U Fin y x F y z ran x 𝒫 U Fin y x F y
93 vex z V
94 eqid x 𝒫 U Fin y x F y = x 𝒫 U Fin y x F y
95 94 elrnmpt z V z ran x 𝒫 U Fin y x F y x 𝒫 U Fin z = y x F y
96 93 95 ax-mp z ran x 𝒫 U Fin y x F y x 𝒫 U Fin z = y x F y
97 92 96 sylib φ ¬ +∞ ran F A ¬ +∞ ran F B z ran x 𝒫 U Fin y x F y x 𝒫 U Fin z = y x F y
98 simp3 φ ¬ +∞ ran F A ¬ +∞ ran F B x 𝒫 U Fin z = y x F y z = y x F y
99 inss1 x A x B x A
100 inss2 x A A
101 99 100 sstri x A x B A
102 inss2 x A x B x B
103 inss2 x B B
104 102 103 sstri x A x B B
105 101 104 ssini x A x B A B
106 105 a1i φ x A x B A B
107 106 4 sseqtrd φ x A x B
108 ss0 x A x B x A x B =
109 107 108 syl φ x A x B =
110 109 ad3antrrr φ ¬ +∞ ran F A ¬ +∞ ran F B x 𝒫 U Fin x A x B =
111 indi x A B = x A x B
112 111 eqcomi x A x B = x A B
113 112 a1i x 𝒫 U Fin x A x B = x A B
114 3 eqcomi A B = U
115 114 ineq2i x A B = x U
116 115 a1i x 𝒫 U Fin x A B = x U
117 elinel1 x 𝒫 U Fin x 𝒫 U
118 elpwi x 𝒫 U x U
119 117 118 syl x 𝒫 U Fin x U
120 df-ss x U x U = x
121 120 biimpi x U x U = x
122 119 121 syl x 𝒫 U Fin x U = x
123 113 116 122 3eqtrrd x 𝒫 U Fin x = x A x B
124 123 adantl φ ¬ +∞ ran F A ¬ +∞ ran F B x 𝒫 U Fin x = x A x B
125 elinel2 x 𝒫 U Fin x Fin
126 125 adantl φ ¬ +∞ ran F A ¬ +∞ ran F B x 𝒫 U Fin x Fin
127 rge0ssre 0 +∞
128 5 ad2antrr φ ¬ +∞ ran F A ¬ +∞ ran F B F : U 0 +∞
129 pm4.56 ¬ +∞ ran F A ¬ +∞ ran F B ¬ +∞ ran F A +∞ ran F B
130 129 biimpi ¬ +∞ ran F A ¬ +∞ ran F B ¬ +∞ ran F A +∞ ran F B
131 elun +∞ ran F A ran F B +∞ ran F A +∞ ran F B
132 130 131 sylnibr ¬ +∞ ran F A ¬ +∞ ran F B ¬ +∞ ran F A ran F B
133 132 adantll φ ¬ +∞ ran F A ¬ +∞ ran F B ¬ +∞ ran F A ran F B
134 rnresun ran F A B = ran F A ran F B
135 134 eqcomi ran F A ran F B = ran F A B
136 135 a1i φ ran F A ran F B = ran F A B
137 114 reseq2i F A B = F U
138 137 rneqi ran F A B = ran F U
139 138 a1i φ ran F A B = ran F U
140 ffn F : U 0 +∞ F Fn U
141 fnresdm F Fn U F U = F
142 5 140 141 3syl φ F U = F
143 142 rneqd φ ran F U = ran F
144 136 139 143 3eqtrd φ ran F A ran F B = ran F
145 144 ad2antrr φ ¬ +∞ ran F A ¬ +∞ ran F B ran F A ran F B = ran F
146 133 145 neleqtrd φ ¬ +∞ ran F A ¬ +∞ ran F B ¬ +∞ ran F
147 128 146 fge0iccico φ ¬ +∞ ran F A ¬ +∞ ran F B F : U 0 +∞
148 147 ad2antrr φ ¬ +∞ ran F A ¬ +∞ ran F B x 𝒫 U Fin y x F : U 0 +∞
149 119 adantr x 𝒫 U Fin y x x U
150 simpr x 𝒫 U Fin y x y x
151 149 150 sseldd x 𝒫 U Fin y x y U
152 151 adantll φ ¬ +∞ ran F A ¬ +∞ ran F B x 𝒫 U Fin y x y U
153 148 152 ffvelrnd φ ¬ +∞ ran F A ¬ +∞ ran F B x 𝒫 U Fin y x F y 0 +∞
154 127 153 sselid φ ¬ +∞ ran F A ¬ +∞ ran F B x 𝒫 U Fin y x F y
155 154 recnd φ ¬ +∞ ran F A ¬ +∞ ran F B x 𝒫 U Fin y x F y
156 110 124 126 155 fsumsplit φ ¬ +∞ ran F A ¬ +∞ ran F B x 𝒫 U Fin y x F y = y x A F y + y x B F y
157 infi x Fin x A Fin
158 125 157 syl x 𝒫 U Fin x A Fin
159 158 adantl φ ¬ +∞ ran F A ¬ +∞ ran F B x 𝒫 U Fin x A Fin
160 simpl φ ¬ +∞ ran F A ¬ +∞ ran F B x 𝒫 U Fin y x A φ ¬ +∞ ran F A ¬ +∞ ran F B x 𝒫 U Fin
161 elinel1 y x A y x
162 161 adantl φ ¬ +∞ ran F A ¬ +∞ ran F B x 𝒫 U Fin y x A y x
163 160 162 154 syl2anc φ ¬ +∞ ran F A ¬ +∞ ran F B x 𝒫 U Fin y x A F y
164 159 163 fsumrecl φ ¬ +∞ ran F A ¬ +∞ ran F B x 𝒫 U Fin y x A F y
165 infi x Fin x B Fin
166 125 165 syl x 𝒫 U Fin x B Fin
167 166 adantl φ ¬ +∞ ran F A ¬ +∞ ran F B x 𝒫 U Fin x B Fin
168 simpl φ ¬ +∞ ran F A ¬ +∞ ran F B x 𝒫 U Fin y x B φ ¬ +∞ ran F A ¬ +∞ ran F B x 𝒫 U Fin
169 elinel1 y x B y x
170 169 adantl φ ¬ +∞ ran F A ¬ +∞ ran F B x 𝒫 U Fin y x B y x
171 168 170 154 syl2anc φ ¬ +∞ ran F A ¬ +∞ ran F B x 𝒫 U Fin y x B F y
172 167 171 fsumrecl φ ¬ +∞ ran F A ¬ +∞ ran F B x 𝒫 U Fin y x B F y
173 rexadd y x A F y y x B F y y x A F y + 𝑒 y x B F y = y x A F y + y x B F y
174 164 172 173 syl2anc φ ¬ +∞ ran F A ¬ +∞ ran F B x 𝒫 U Fin y x A F y + 𝑒 y x B F y = y x A F y + y x B F y
175 174 eqcomd φ ¬ +∞ ran F A ¬ +∞ ran F B x 𝒫 U Fin y x A F y + y x B F y = y x A F y + 𝑒 y x B F y
176 156 175 eqtrd φ ¬ +∞ ran F A ¬ +∞ ran F B x 𝒫 U Fin y x F y = y x A F y + 𝑒 y x B F y
177 ressxr *
178 177 164 sselid φ ¬ +∞ ran F A ¬ +∞ ran F B x 𝒫 U Fin y x A F y *
179 177 172 sselid φ ¬ +∞ ran F A ¬ +∞ ran F B x 𝒫 U Fin y x B F y *
180 1 adantr φ ¬ +∞ ran F A A V
181 33 adantr φ ¬ +∞ ran F A F A : A 0 +∞
182 simpr φ ¬ +∞ ran F A ¬ +∞ ran F A
183 181 182 fge0iccico φ ¬ +∞ ran F A F A : A 0 +∞
184 180 183 sge0reval φ ¬ +∞ ran F A sum^ F A = sup ran a 𝒫 A Fin b a F A b * <
185 184 eqcomd φ ¬ +∞ ran F A sup ran a 𝒫 A Fin b a F A b * < = sum^ F A
186 34 adantr φ ¬ +∞ ran F A sum^ F A *
187 185 186 eqeltrd φ ¬ +∞ ran F A sup ran a 𝒫 A Fin b a F A b * < *
188 187 adantr φ ¬ +∞ ran F A ¬ +∞ ran F B sup ran a 𝒫 A Fin b a F A b * < *
189 2 adantr φ ¬ +∞ ran F B B W
190 39 adantr φ ¬ +∞ ran F B F B : B 0 +∞
191 simpr φ ¬ +∞ ran F B ¬ +∞ ran F B
192 190 191 fge0iccico φ ¬ +∞ ran F B F B : B 0 +∞
193 189 192 sge0reval φ ¬ +∞ ran F B sum^ F B = sup ran c 𝒫 B Fin d c F B d * <
194 193 eqcomd φ ¬ +∞ ran F B sup ran c 𝒫 B Fin d c F B d * < = sum^ F B
195 41 adantr φ ¬ +∞ ran F B sum^ F B *
196 194 195 eqeltrd φ ¬ +∞ ran F B sup ran c 𝒫 B Fin d c F B d * < *
197 196 adantlr φ ¬ +∞ ran F A ¬ +∞ ran F B sup ran c 𝒫 B Fin d c F B d * < *
198 188 197 jca φ ¬ +∞ ran F A ¬ +∞ ran F B sup ran a 𝒫 A Fin b a F A b * < * sup ran c 𝒫 B Fin d c F B d * < *
199 198 adantr φ ¬ +∞ ran F A ¬ +∞ ran F B x 𝒫 U Fin sup ran a 𝒫 A Fin b a F A b * < * sup ran c 𝒫 B Fin d c F B d * < *
200 178 179 199 jca31 φ ¬ +∞ ran F A ¬ +∞ ran F B x 𝒫 U Fin y x A F y * y x B F y * sup ran a 𝒫 A Fin b a F A b * < * sup ran c 𝒫 B Fin d c F B d * < *
201 180 adantr φ ¬ +∞ ran F A x 𝒫 U Fin A V
202 181 adantr φ ¬ +∞ ran F A x 𝒫 U Fin F A : A 0 +∞
203 182 adantr φ ¬ +∞ ran F A x 𝒫 U Fin ¬ +∞ ran F A
204 202 203 fge0iccico φ ¬ +∞ ran F A x 𝒫 U Fin F A : A 0 +∞
205 100 a1i φ ¬ +∞ ran F A x 𝒫 U Fin x A A
206 158 adantl φ ¬ +∞ ran F A x 𝒫 U Fin x A Fin
207 201 204 205 206 fsumlesge0 φ ¬ +∞ ran F A x 𝒫 U Fin y x A F A y sum^ F A
208 100 sseli y x A y A
209 fvres y A F A y = F y
210 208 209 syl y x A F A y = F y
211 210 adantl φ ¬ +∞ ran F A x 𝒫 U Fin y x A F A y = F y
212 211 sumeq2dv φ ¬ +∞ ran F A x 𝒫 U Fin y x A F A y = y x A F y
213 184 adantr φ ¬ +∞ ran F A x 𝒫 U Fin sum^ F A = sup ran a 𝒫 A Fin b a F A b * <
214 212 213 breq12d φ ¬ +∞ ran F A x 𝒫 U Fin y x A F A y sum^ F A y x A F y sup ran a 𝒫 A Fin b a F A b * <
215 207 214 mpbid φ ¬ +∞ ran F A x 𝒫 U Fin y x A F y sup ran a 𝒫 A Fin b a F A b * <
216 215 adantlr φ ¬ +∞ ran F A ¬ +∞ ran F B x 𝒫 U Fin y x A F y sup ran a 𝒫 A Fin b a F A b * <
217 189 adantr φ ¬ +∞ ran F B x 𝒫 U Fin B W
218 190 adantr φ ¬ +∞ ran F B x 𝒫 U Fin F B : B 0 +∞
219 191 adantr φ ¬ +∞ ran F B x 𝒫 U Fin ¬ +∞ ran F B
220 218 219 fge0iccico φ ¬ +∞ ran F B x 𝒫 U Fin F B : B 0 +∞
221 103 a1i φ ¬ +∞ ran F B x 𝒫 U Fin x B B
222 166 adantl φ ¬ +∞ ran F B x 𝒫 U Fin x B Fin
223 217 220 221 222 fsumlesge0 φ ¬ +∞ ran F B x 𝒫 U Fin y x B F B y sum^ F B
224 103 sseli y x B y B
225 fvres y B F B y = F y
226 224 225 syl y x B F B y = F y
227 226 adantl φ ¬ +∞ ran F B x 𝒫 U Fin y x B F B y = F y
228 227 sumeq2dv φ ¬ +∞ ran F B x 𝒫 U Fin y x B F B y = y x B F y
229 193 adantr φ ¬ +∞ ran F B x 𝒫 U Fin sum^ F B = sup ran c 𝒫 B Fin d c F B d * <
230 228 229 breq12d φ ¬ +∞ ran F B x 𝒫 U Fin y x B F B y sum^ F B y x B F y sup ran c 𝒫 B Fin d c F B d * <
231 223 230 mpbid φ ¬ +∞ ran F B x 𝒫 U Fin y x B F y sup ran c 𝒫 B Fin d c F B d * <
232 231 adantllr φ ¬ +∞ ran F A ¬ +∞ ran F B x 𝒫 U Fin y x B F y sup ran c 𝒫 B Fin d c F B d * <
233 216 232 jca φ ¬ +∞ ran F A ¬ +∞ ran F B x 𝒫 U Fin y x A F y sup ran a 𝒫 A Fin b a F A b * < y x B F y sup ran c 𝒫 B Fin d c F B d * <
234 xle2add y x A F y * y x B F y * sup ran a 𝒫 A Fin b a F A b * < * sup ran c 𝒫 B Fin d c F B d * < * y x A F y sup ran a 𝒫 A Fin b a F A b * < y x B F y sup ran c 𝒫 B Fin d c F B d * < y x A F y + 𝑒 y x B F y sup ran a 𝒫 A Fin b a F A b * < + 𝑒 sup ran c 𝒫 B Fin d c F B d * <
235 200 233 234 sylc φ ¬ +∞ ran F A ¬ +∞ ran F B x 𝒫 U Fin y x A F y + 𝑒 y x B F y sup ran a 𝒫 A Fin b a F A b * < + 𝑒 sup ran c 𝒫 B Fin d c F B d * <
236 176 235 eqbrtrd φ ¬ +∞ ran F A ¬ +∞ ran F B x 𝒫 U Fin y x F y sup ran a 𝒫 A Fin b a F A b * < + 𝑒 sup ran c 𝒫 B Fin d c F B d * <
237 236 3adant3 φ ¬ +∞ ran F A ¬ +∞ ran F B x 𝒫 U Fin z = y x F y y x F y sup ran a 𝒫 A Fin b a F A b * < + 𝑒 sup ran c 𝒫 B Fin d c F B d * <
238 98 237 eqbrtrd φ ¬ +∞ ran F A ¬ +∞ ran F B x 𝒫 U Fin z = y x F y z sup ran a 𝒫 A Fin b a F A b * < + 𝑒 sup ran c 𝒫 B Fin d c F B d * <
239 238 3exp φ ¬ +∞ ran F A ¬ +∞ ran F B x 𝒫 U Fin z = y x F y z sup ran a 𝒫 A Fin b a F A b * < + 𝑒 sup ran c 𝒫 B Fin d c F B d * <
240 239 rexlimdv φ ¬ +∞ ran F A ¬ +∞ ran F B x 𝒫 U Fin z = y x F y z sup ran a 𝒫 A Fin b a F A b * < + 𝑒 sup ran c 𝒫 B Fin d c F B d * <
241 240 adantr φ ¬ +∞ ran F A ¬ +∞ ran F B z ran x 𝒫 U Fin y x F y x 𝒫 U Fin z = y x F y z sup ran a 𝒫 A Fin b a F A b * < + 𝑒 sup ran c 𝒫 B Fin d c F B d * <
242 97 241 mpd φ ¬ +∞ ran F A ¬ +∞ ran F B z ran x 𝒫 U Fin y x F y z sup ran a 𝒫 A Fin b a F A b * < + 𝑒 sup ran c 𝒫 B Fin d c F B d * <
243 242 ralrimiva φ ¬ +∞ ran F A ¬ +∞ ran F B z ran x 𝒫 U Fin y x F y z sup ran a 𝒫 A Fin b a F A b * < + 𝑒 sup ran c 𝒫 B Fin d c F B d * <
244 147 sge0rnre φ ¬ +∞ ran F A ¬ +∞ ran F B ran x 𝒫 U Fin y x F y
245 177 a1i φ ¬ +∞ ran F A ¬ +∞ ran F B *
246 244 245 sstrd φ ¬ +∞ ran F A ¬ +∞ ran F B ran x 𝒫 U Fin y x F y *
247 188 197 xaddcld φ ¬ +∞ ran F A ¬ +∞ ran F B sup ran a 𝒫 A Fin b a F A b * < + 𝑒 sup ran c 𝒫 B Fin d c F B d * < *
248 supxrleub ran x 𝒫 U Fin y x F y * sup ran a 𝒫 A Fin b a F A b * < + 𝑒 sup ran c 𝒫 B Fin d c F B d * < * sup ran x 𝒫 U Fin y x F y * < sup ran a 𝒫 A Fin b a F A b * < + 𝑒 sup ran c 𝒫 B Fin d c F B d * < z ran x 𝒫 U Fin y x F y z sup ran a 𝒫 A Fin b a F A b * < + 𝑒 sup ran c 𝒫 B Fin d c F B d * <
249 246 247 248 syl2anc φ ¬ +∞ ran F A ¬ +∞ ran F B sup ran x 𝒫 U Fin y x F y * < sup ran a 𝒫 A Fin b a F A b * < + 𝑒 sup ran c 𝒫 B Fin d c F B d * < z ran x 𝒫 U Fin y x F y z sup ran a 𝒫 A Fin b a F A b * < + 𝑒 sup ran c 𝒫 B Fin d c F B d * <
250 243 249 mpbird φ ¬ +∞ ran F A ¬ +∞ ran F B sup ran x 𝒫 U Fin y x F y * < sup ran a 𝒫 A Fin b a F A b * < + 𝑒 sup ran c 𝒫 B Fin d c F B d * <
251 14 ad2antrr φ ¬ +∞ ran F A ¬ +∞ ran F B U V
252 251 147 sge0reval φ ¬ +∞ ran F A ¬ +∞ ran F B sum^ F = sup ran x 𝒫 U Fin y x F y * <
253 184 adantr φ ¬ +∞ ran F A ¬ +∞ ran F B sum^ F A = sup ran a 𝒫 A Fin b a F A b * <
254 193 adantlr φ ¬ +∞ ran F A ¬ +∞ ran F B sum^ F B = sup ran c 𝒫 B Fin d c F B d * <
255 253 254 oveq12d φ ¬ +∞ ran F A ¬ +∞ ran F B sum^ F A + 𝑒 sum^ F B = sup ran a 𝒫 A Fin b a F A b * < + 𝑒 sup ran c 𝒫 B Fin d c F B d * <
256 250 252 255 3brtr4d φ ¬ +∞ ran F A ¬ +∞ ran F B sum^ F sum^ F A + 𝑒 sum^ F B
257 91 256 pm2.61dan φ ¬ +∞ ran F A sum^ F sum^ F A + 𝑒 sum^ F B
258 69 257 pm2.61dan φ sum^ F sum^ F A + 𝑒 sum^ F B
259 258 adantr φ sum^ F = +∞ sum^ F sum^ F A + 𝑒 sum^ F B
260 pnfge sum^ F A + 𝑒 sum^ F B * sum^ F A + 𝑒 sum^ F B +∞
261 42 260 syl φ sum^ F A + 𝑒 sum^ F B +∞
262 261 adantr φ sum^ F = +∞ sum^ F A + 𝑒 sum^ F B +∞
263 id sum^ F = +∞ sum^ F = +∞
264 263 eqcomd sum^ F = +∞ +∞ = sum^ F
265 264 adantl φ sum^ F = +∞ +∞ = sum^ F
266 262 265 breqtrd φ sum^ F = +∞ sum^ F A + 𝑒 sum^ F B sum^ F
267 29 43 259 266 xrletrid φ sum^ F = +∞ sum^ F = sum^ F A + 𝑒 sum^ F B
268 22 27 267 syl2anc φ ¬ sum^ F sum^ F = sum^ F A + 𝑒 sum^ F B
269 21 268 pm2.61dan φ sum^ F = sum^ F A + 𝑒 sum^ F B