| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sge0split.a |
|- ( ph -> A e. V ) |
| 2 |
|
sge0split.b |
|- ( ph -> B e. W ) |
| 3 |
|
sge0split.u |
|- U = ( A u. B ) |
| 4 |
|
sge0split.in0 |
|- ( ph -> ( A i^i B ) = (/) ) |
| 5 |
|
sge0split.f |
|- ( ph -> F : U --> ( 0 [,] +oo ) ) |
| 6 |
1
|
adantr |
|- ( ( ph /\ ( sum^ ` F ) e. RR ) -> A e. V ) |
| 7 |
2
|
adantr |
|- ( ( ph /\ ( sum^ ` F ) e. RR ) -> B e. W ) |
| 8 |
4
|
adantr |
|- ( ( ph /\ ( sum^ ` F ) e. RR ) -> ( A i^i B ) = (/) ) |
| 9 |
5
|
adantr |
|- ( ( ph /\ ( sum^ ` F ) e. RR ) -> F : U --> ( 0 [,] +oo ) ) |
| 10 |
|
simpr |
|- ( ( ph /\ ( sum^ ` F ) e. RR ) -> ( sum^ ` F ) e. RR ) |
| 11 |
6 7 3 8 9 10
|
sge0resplit |
|- ( ( ph /\ ( sum^ ` F ) e. RR ) -> ( sum^ ` F ) = ( ( sum^ ` ( F |` A ) ) + ( sum^ ` ( F |` B ) ) ) ) |
| 12 |
|
unexg |
|- ( ( A e. V /\ B e. W ) -> ( A u. B ) e. _V ) |
| 13 |
1 2 12
|
syl2anc |
|- ( ph -> ( A u. B ) e. _V ) |
| 14 |
3 13
|
eqeltrid |
|- ( ph -> U e. _V ) |
| 15 |
14
|
adantr |
|- ( ( ph /\ ( sum^ ` F ) e. RR ) -> U e. _V ) |
| 16 |
15 9 10
|
sge0ssre |
|- ( ( ph /\ ( sum^ ` F ) e. RR ) -> ( sum^ ` ( F |` A ) ) e. RR ) |
| 17 |
15 9 10
|
sge0ssre |
|- ( ( ph /\ ( sum^ ` F ) e. RR ) -> ( sum^ ` ( F |` B ) ) e. RR ) |
| 18 |
|
rexadd |
|- ( ( ( sum^ ` ( F |` A ) ) e. RR /\ ( sum^ ` ( F |` B ) ) e. RR ) -> ( ( sum^ ` ( F |` A ) ) +e ( sum^ ` ( F |` B ) ) ) = ( ( sum^ ` ( F |` A ) ) + ( sum^ ` ( F |` B ) ) ) ) |
| 19 |
16 17 18
|
syl2anc |
|- ( ( ph /\ ( sum^ ` F ) e. RR ) -> ( ( sum^ ` ( F |` A ) ) +e ( sum^ ` ( F |` B ) ) ) = ( ( sum^ ` ( F |` A ) ) + ( sum^ ` ( F |` B ) ) ) ) |
| 20 |
19
|
eqcomd |
|- ( ( ph /\ ( sum^ ` F ) e. RR ) -> ( ( sum^ ` ( F |` A ) ) + ( sum^ ` ( F |` B ) ) ) = ( ( sum^ ` ( F |` A ) ) +e ( sum^ ` ( F |` B ) ) ) ) |
| 21 |
11 20
|
eqtrd |
|- ( ( ph /\ ( sum^ ` F ) e. RR ) -> ( sum^ ` F ) = ( ( sum^ ` ( F |` A ) ) +e ( sum^ ` ( F |` B ) ) ) ) |
| 22 |
|
simpl |
|- ( ( ph /\ -. ( sum^ ` F ) e. RR ) -> ph ) |
| 23 |
|
simpr |
|- ( ( ph /\ -. ( sum^ ` F ) e. RR ) -> -. ( sum^ ` F ) e. RR ) |
| 24 |
14 5
|
sge0repnf |
|- ( ph -> ( ( sum^ ` F ) e. RR <-> -. ( sum^ ` F ) = +oo ) ) |
| 25 |
24
|
adantr |
|- ( ( ph /\ -. ( sum^ ` F ) e. RR ) -> ( ( sum^ ` F ) e. RR <-> -. ( sum^ ` F ) = +oo ) ) |
| 26 |
23 25
|
mtbid |
|- ( ( ph /\ -. ( sum^ ` F ) e. RR ) -> -. -. ( sum^ ` F ) = +oo ) |
| 27 |
26
|
notnotrd |
|- ( ( ph /\ -. ( sum^ ` F ) e. RR ) -> ( sum^ ` F ) = +oo ) |
| 28 |
14 5
|
sge0xrcl |
|- ( ph -> ( sum^ ` F ) e. RR* ) |
| 29 |
28
|
adantr |
|- ( ( ph /\ ( sum^ ` F ) = +oo ) -> ( sum^ ` F ) e. RR* ) |
| 30 |
|
ssun1 |
|- A C_ ( A u. B ) |
| 31 |
30 3
|
sseqtrri |
|- A C_ U |
| 32 |
31
|
a1i |
|- ( ph -> A C_ U ) |
| 33 |
5 32
|
fssresd |
|- ( ph -> ( F |` A ) : A --> ( 0 [,] +oo ) ) |
| 34 |
1 33
|
sge0xrcl |
|- ( ph -> ( sum^ ` ( F |` A ) ) e. RR* ) |
| 35 |
|
iccssxr |
|- ( 0 [,] +oo ) C_ RR* |
| 36 |
|
ssun2 |
|- B C_ ( A u. B ) |
| 37 |
36 3
|
sseqtrri |
|- B C_ U |
| 38 |
37
|
a1i |
|- ( ph -> B C_ U ) |
| 39 |
5 38
|
fssresd |
|- ( ph -> ( F |` B ) : B --> ( 0 [,] +oo ) ) |
| 40 |
2 39
|
sge0cl |
|- ( ph -> ( sum^ ` ( F |` B ) ) e. ( 0 [,] +oo ) ) |
| 41 |
35 40
|
sselid |
|- ( ph -> ( sum^ ` ( F |` B ) ) e. RR* ) |
| 42 |
34 41
|
xaddcld |
|- ( ph -> ( ( sum^ ` ( F |` A ) ) +e ( sum^ ` ( F |` B ) ) ) e. RR* ) |
| 43 |
42
|
adantr |
|- ( ( ph /\ ( sum^ ` F ) = +oo ) -> ( ( sum^ ` ( F |` A ) ) +e ( sum^ ` ( F |` B ) ) ) e. RR* ) |
| 44 |
|
pnfxr |
|- +oo e. RR* |
| 45 |
|
eqid |
|- +oo = +oo |
| 46 |
|
xreqle |
|- ( ( +oo e. RR* /\ +oo = +oo ) -> +oo <_ +oo ) |
| 47 |
44 45 46
|
mp2an |
|- +oo <_ +oo |
| 48 |
47
|
a1i |
|- ( ( ph /\ +oo e. ran ( F |` A ) ) -> +oo <_ +oo ) |
| 49 |
14
|
adantr |
|- ( ( ph /\ +oo e. ran ( F |` A ) ) -> U e. _V ) |
| 50 |
5
|
adantr |
|- ( ( ph /\ +oo e. ran ( F |` A ) ) -> F : U --> ( 0 [,] +oo ) ) |
| 51 |
|
rnresss |
|- ran ( F |` A ) C_ ran F |
| 52 |
51
|
sseli |
|- ( +oo e. ran ( F |` A ) -> +oo e. ran F ) |
| 53 |
52
|
adantl |
|- ( ( ph /\ +oo e. ran ( F |` A ) ) -> +oo e. ran F ) |
| 54 |
49 50 53
|
sge0pnfval |
|- ( ( ph /\ +oo e. ran ( F |` A ) ) -> ( sum^ ` F ) = +oo ) |
| 55 |
|
xrge0neqmnf |
|- ( ( sum^ ` ( F |` B ) ) e. ( 0 [,] +oo ) -> ( sum^ ` ( F |` B ) ) =/= -oo ) |
| 56 |
40 55
|
syl |
|- ( ph -> ( sum^ ` ( F |` B ) ) =/= -oo ) |
| 57 |
|
xaddpnf2 |
|- ( ( ( sum^ ` ( F |` B ) ) e. RR* /\ ( sum^ ` ( F |` B ) ) =/= -oo ) -> ( +oo +e ( sum^ ` ( F |` B ) ) ) = +oo ) |
| 58 |
41 56 57
|
syl2anc |
|- ( ph -> ( +oo +e ( sum^ ` ( F |` B ) ) ) = +oo ) |
| 59 |
58
|
eqcomd |
|- ( ph -> +oo = ( +oo +e ( sum^ ` ( F |` B ) ) ) ) |
| 60 |
59
|
adantr |
|- ( ( ph /\ +oo e. ran ( F |` A ) ) -> +oo = ( +oo +e ( sum^ ` ( F |` B ) ) ) ) |
| 61 |
1
|
adantr |
|- ( ( ph /\ +oo e. ran ( F |` A ) ) -> A e. V ) |
| 62 |
33
|
adantr |
|- ( ( ph /\ +oo e. ran ( F |` A ) ) -> ( F |` A ) : A --> ( 0 [,] +oo ) ) |
| 63 |
|
simpr |
|- ( ( ph /\ +oo e. ran ( F |` A ) ) -> +oo e. ran ( F |` A ) ) |
| 64 |
61 62 63
|
sge0pnfval |
|- ( ( ph /\ +oo e. ran ( F |` A ) ) -> ( sum^ ` ( F |` A ) ) = +oo ) |
| 65 |
64
|
oveq1d |
|- ( ( ph /\ +oo e. ran ( F |` A ) ) -> ( ( sum^ ` ( F |` A ) ) +e ( sum^ ` ( F |` B ) ) ) = ( +oo +e ( sum^ ` ( F |` B ) ) ) ) |
| 66 |
60 54 65
|
3eqtr4d |
|- ( ( ph /\ +oo e. ran ( F |` A ) ) -> ( sum^ ` F ) = ( ( sum^ ` ( F |` A ) ) +e ( sum^ ` ( F |` B ) ) ) ) |
| 67 |
66 54
|
eqtr3d |
|- ( ( ph /\ +oo e. ran ( F |` A ) ) -> ( ( sum^ ` ( F |` A ) ) +e ( sum^ ` ( F |` B ) ) ) = +oo ) |
| 68 |
54 67
|
breq12d |
|- ( ( ph /\ +oo e. ran ( F |` A ) ) -> ( ( sum^ ` F ) <_ ( ( sum^ ` ( F |` A ) ) +e ( sum^ ` ( F |` B ) ) ) <-> +oo <_ +oo ) ) |
| 69 |
48 68
|
mpbird |
|- ( ( ph /\ +oo e. ran ( F |` A ) ) -> ( sum^ ` F ) <_ ( ( sum^ ` ( F |` A ) ) +e ( sum^ ` ( F |` B ) ) ) ) |
| 70 |
47
|
a1i |
|- ( ( ph /\ +oo e. ran ( F |` B ) ) -> +oo <_ +oo ) |
| 71 |
14
|
adantr |
|- ( ( ph /\ +oo e. ran ( F |` B ) ) -> U e. _V ) |
| 72 |
5
|
adantr |
|- ( ( ph /\ +oo e. ran ( F |` B ) ) -> F : U --> ( 0 [,] +oo ) ) |
| 73 |
|
rnresss |
|- ran ( F |` B ) C_ ran F |
| 74 |
73
|
sseli |
|- ( +oo e. ran ( F |` B ) -> +oo e. ran F ) |
| 75 |
74
|
adantl |
|- ( ( ph /\ +oo e. ran ( F |` B ) ) -> +oo e. ran F ) |
| 76 |
71 72 75
|
sge0pnfval |
|- ( ( ph /\ +oo e. ran ( F |` B ) ) -> ( sum^ ` F ) = +oo ) |
| 77 |
2
|
adantr |
|- ( ( ph /\ +oo e. ran ( F |` B ) ) -> B e. W ) |
| 78 |
39
|
adantr |
|- ( ( ph /\ +oo e. ran ( F |` B ) ) -> ( F |` B ) : B --> ( 0 [,] +oo ) ) |
| 79 |
|
simpr |
|- ( ( ph /\ +oo e. ran ( F |` B ) ) -> +oo e. ran ( F |` B ) ) |
| 80 |
77 78 79
|
sge0pnfval |
|- ( ( ph /\ +oo e. ran ( F |` B ) ) -> ( sum^ ` ( F |` B ) ) = +oo ) |
| 81 |
80
|
oveq2d |
|- ( ( ph /\ +oo e. ran ( F |` B ) ) -> ( ( sum^ ` ( F |` A ) ) +e ( sum^ ` ( F |` B ) ) ) = ( ( sum^ ` ( F |` A ) ) +e +oo ) ) |
| 82 |
1 33
|
sge0cl |
|- ( ph -> ( sum^ ` ( F |` A ) ) e. ( 0 [,] +oo ) ) |
| 83 |
|
xrge0neqmnf |
|- ( ( sum^ ` ( F |` A ) ) e. ( 0 [,] +oo ) -> ( sum^ ` ( F |` A ) ) =/= -oo ) |
| 84 |
82 83
|
syl |
|- ( ph -> ( sum^ ` ( F |` A ) ) =/= -oo ) |
| 85 |
|
xaddpnf1 |
|- ( ( ( sum^ ` ( F |` A ) ) e. RR* /\ ( sum^ ` ( F |` A ) ) =/= -oo ) -> ( ( sum^ ` ( F |` A ) ) +e +oo ) = +oo ) |
| 86 |
34 84 85
|
syl2anc |
|- ( ph -> ( ( sum^ ` ( F |` A ) ) +e +oo ) = +oo ) |
| 87 |
86
|
adantr |
|- ( ( ph /\ +oo e. ran ( F |` B ) ) -> ( ( sum^ ` ( F |` A ) ) +e +oo ) = +oo ) |
| 88 |
81 87
|
eqtrd |
|- ( ( ph /\ +oo e. ran ( F |` B ) ) -> ( ( sum^ ` ( F |` A ) ) +e ( sum^ ` ( F |` B ) ) ) = +oo ) |
| 89 |
76 88
|
breq12d |
|- ( ( ph /\ +oo e. ran ( F |` B ) ) -> ( ( sum^ ` F ) <_ ( ( sum^ ` ( F |` A ) ) +e ( sum^ ` ( F |` B ) ) ) <-> +oo <_ +oo ) ) |
| 90 |
70 89
|
mpbird |
|- ( ( ph /\ +oo e. ran ( F |` B ) ) -> ( sum^ ` F ) <_ ( ( sum^ ` ( F |` A ) ) +e ( sum^ ` ( F |` B ) ) ) ) |
| 91 |
90
|
adantlr |
|- ( ( ( ph /\ -. +oo e. ran ( F |` A ) ) /\ +oo e. ran ( F |` B ) ) -> ( sum^ ` F ) <_ ( ( sum^ ` ( F |` A ) ) +e ( sum^ ` ( F |` B ) ) ) ) |
| 92 |
|
simpr |
|- ( ( ( ( ph /\ -. +oo e. ran ( F |` A ) ) /\ -. +oo e. ran ( F |` B ) ) /\ z e. ran ( x e. ( ~P U i^i Fin ) |-> sum_ y e. x ( F ` y ) ) ) -> z e. ran ( x e. ( ~P U i^i Fin ) |-> sum_ y e. x ( F ` y ) ) ) |
| 93 |
|
vex |
|- z e. _V |
| 94 |
|
eqid |
|- ( x e. ( ~P U i^i Fin ) |-> sum_ y e. x ( F ` y ) ) = ( x e. ( ~P U i^i Fin ) |-> sum_ y e. x ( F ` y ) ) |
| 95 |
94
|
elrnmpt |
|- ( z e. _V -> ( z e. ran ( x e. ( ~P U i^i Fin ) |-> sum_ y e. x ( F ` y ) ) <-> E. x e. ( ~P U i^i Fin ) z = sum_ y e. x ( F ` y ) ) ) |
| 96 |
93 95
|
ax-mp |
|- ( z e. ran ( x e. ( ~P U i^i Fin ) |-> sum_ y e. x ( F ` y ) ) <-> E. x e. ( ~P U i^i Fin ) z = sum_ y e. x ( F ` y ) ) |
| 97 |
92 96
|
sylib |
|- ( ( ( ( ph /\ -. +oo e. ran ( F |` A ) ) /\ -. +oo e. ran ( F |` B ) ) /\ z e. ran ( x e. ( ~P U i^i Fin ) |-> sum_ y e. x ( F ` y ) ) ) -> E. x e. ( ~P U i^i Fin ) z = sum_ y e. x ( F ` y ) ) |
| 98 |
|
simp3 |
|- ( ( ( ( ph /\ -. +oo e. ran ( F |` A ) ) /\ -. +oo e. ran ( F |` B ) ) /\ x e. ( ~P U i^i Fin ) /\ z = sum_ y e. x ( F ` y ) ) -> z = sum_ y e. x ( F ` y ) ) |
| 99 |
|
inss1 |
|- ( ( x i^i A ) i^i ( x i^i B ) ) C_ ( x i^i A ) |
| 100 |
|
inss2 |
|- ( x i^i A ) C_ A |
| 101 |
99 100
|
sstri |
|- ( ( x i^i A ) i^i ( x i^i B ) ) C_ A |
| 102 |
|
inss2 |
|- ( ( x i^i A ) i^i ( x i^i B ) ) C_ ( x i^i B ) |
| 103 |
|
inss2 |
|- ( x i^i B ) C_ B |
| 104 |
102 103
|
sstri |
|- ( ( x i^i A ) i^i ( x i^i B ) ) C_ B |
| 105 |
101 104
|
ssini |
|- ( ( x i^i A ) i^i ( x i^i B ) ) C_ ( A i^i B ) |
| 106 |
105
|
a1i |
|- ( ph -> ( ( x i^i A ) i^i ( x i^i B ) ) C_ ( A i^i B ) ) |
| 107 |
106 4
|
sseqtrd |
|- ( ph -> ( ( x i^i A ) i^i ( x i^i B ) ) C_ (/) ) |
| 108 |
|
ss0 |
|- ( ( ( x i^i A ) i^i ( x i^i B ) ) C_ (/) -> ( ( x i^i A ) i^i ( x i^i B ) ) = (/) ) |
| 109 |
107 108
|
syl |
|- ( ph -> ( ( x i^i A ) i^i ( x i^i B ) ) = (/) ) |
| 110 |
109
|
ad3antrrr |
|- ( ( ( ( ph /\ -. +oo e. ran ( F |` A ) ) /\ -. +oo e. ran ( F |` B ) ) /\ x e. ( ~P U i^i Fin ) ) -> ( ( x i^i A ) i^i ( x i^i B ) ) = (/) ) |
| 111 |
|
indi |
|- ( x i^i ( A u. B ) ) = ( ( x i^i A ) u. ( x i^i B ) ) |
| 112 |
111
|
eqcomi |
|- ( ( x i^i A ) u. ( x i^i B ) ) = ( x i^i ( A u. B ) ) |
| 113 |
112
|
a1i |
|- ( x e. ( ~P U i^i Fin ) -> ( ( x i^i A ) u. ( x i^i B ) ) = ( x i^i ( A u. B ) ) ) |
| 114 |
3
|
eqcomi |
|- ( A u. B ) = U |
| 115 |
114
|
ineq2i |
|- ( x i^i ( A u. B ) ) = ( x i^i U ) |
| 116 |
115
|
a1i |
|- ( x e. ( ~P U i^i Fin ) -> ( x i^i ( A u. B ) ) = ( x i^i U ) ) |
| 117 |
|
elinel1 |
|- ( x e. ( ~P U i^i Fin ) -> x e. ~P U ) |
| 118 |
|
elpwi |
|- ( x e. ~P U -> x C_ U ) |
| 119 |
117 118
|
syl |
|- ( x e. ( ~P U i^i Fin ) -> x C_ U ) |
| 120 |
|
dfss2 |
|- ( x C_ U <-> ( x i^i U ) = x ) |
| 121 |
120
|
biimpi |
|- ( x C_ U -> ( x i^i U ) = x ) |
| 122 |
119 121
|
syl |
|- ( x e. ( ~P U i^i Fin ) -> ( x i^i U ) = x ) |
| 123 |
113 116 122
|
3eqtrrd |
|- ( x e. ( ~P U i^i Fin ) -> x = ( ( x i^i A ) u. ( x i^i B ) ) ) |
| 124 |
123
|
adantl |
|- ( ( ( ( ph /\ -. +oo e. ran ( F |` A ) ) /\ -. +oo e. ran ( F |` B ) ) /\ x e. ( ~P U i^i Fin ) ) -> x = ( ( x i^i A ) u. ( x i^i B ) ) ) |
| 125 |
|
elinel2 |
|- ( x e. ( ~P U i^i Fin ) -> x e. Fin ) |
| 126 |
125
|
adantl |
|- ( ( ( ( ph /\ -. +oo e. ran ( F |` A ) ) /\ -. +oo e. ran ( F |` B ) ) /\ x e. ( ~P U i^i Fin ) ) -> x e. Fin ) |
| 127 |
|
rge0ssre |
|- ( 0 [,) +oo ) C_ RR |
| 128 |
5
|
ad2antrr |
|- ( ( ( ph /\ -. +oo e. ran ( F |` A ) ) /\ -. +oo e. ran ( F |` B ) ) -> F : U --> ( 0 [,] +oo ) ) |
| 129 |
|
pm4.56 |
|- ( ( -. +oo e. ran ( F |` A ) /\ -. +oo e. ran ( F |` B ) ) <-> -. ( +oo e. ran ( F |` A ) \/ +oo e. ran ( F |` B ) ) ) |
| 130 |
129
|
biimpi |
|- ( ( -. +oo e. ran ( F |` A ) /\ -. +oo e. ran ( F |` B ) ) -> -. ( +oo e. ran ( F |` A ) \/ +oo e. ran ( F |` B ) ) ) |
| 131 |
|
elun |
|- ( +oo e. ( ran ( F |` A ) u. ran ( F |` B ) ) <-> ( +oo e. ran ( F |` A ) \/ +oo e. ran ( F |` B ) ) ) |
| 132 |
130 131
|
sylnibr |
|- ( ( -. +oo e. ran ( F |` A ) /\ -. +oo e. ran ( F |` B ) ) -> -. +oo e. ( ran ( F |` A ) u. ran ( F |` B ) ) ) |
| 133 |
132
|
adantll |
|- ( ( ( ph /\ -. +oo e. ran ( F |` A ) ) /\ -. +oo e. ran ( F |` B ) ) -> -. +oo e. ( ran ( F |` A ) u. ran ( F |` B ) ) ) |
| 134 |
|
rnresun |
|- ran ( F |` ( A u. B ) ) = ( ran ( F |` A ) u. ran ( F |` B ) ) |
| 135 |
134
|
eqcomi |
|- ( ran ( F |` A ) u. ran ( F |` B ) ) = ran ( F |` ( A u. B ) ) |
| 136 |
135
|
a1i |
|- ( ph -> ( ran ( F |` A ) u. ran ( F |` B ) ) = ran ( F |` ( A u. B ) ) ) |
| 137 |
114
|
reseq2i |
|- ( F |` ( A u. B ) ) = ( F |` U ) |
| 138 |
137
|
rneqi |
|- ran ( F |` ( A u. B ) ) = ran ( F |` U ) |
| 139 |
138
|
a1i |
|- ( ph -> ran ( F |` ( A u. B ) ) = ran ( F |` U ) ) |
| 140 |
|
ffn |
|- ( F : U --> ( 0 [,] +oo ) -> F Fn U ) |
| 141 |
|
fnresdm |
|- ( F Fn U -> ( F |` U ) = F ) |
| 142 |
5 140 141
|
3syl |
|- ( ph -> ( F |` U ) = F ) |
| 143 |
142
|
rneqd |
|- ( ph -> ran ( F |` U ) = ran F ) |
| 144 |
136 139 143
|
3eqtrd |
|- ( ph -> ( ran ( F |` A ) u. ran ( F |` B ) ) = ran F ) |
| 145 |
144
|
ad2antrr |
|- ( ( ( ph /\ -. +oo e. ran ( F |` A ) ) /\ -. +oo e. ran ( F |` B ) ) -> ( ran ( F |` A ) u. ran ( F |` B ) ) = ran F ) |
| 146 |
133 145
|
neleqtrd |
|- ( ( ( ph /\ -. +oo e. ran ( F |` A ) ) /\ -. +oo e. ran ( F |` B ) ) -> -. +oo e. ran F ) |
| 147 |
128 146
|
fge0iccico |
|- ( ( ( ph /\ -. +oo e. ran ( F |` A ) ) /\ -. +oo e. ran ( F |` B ) ) -> F : U --> ( 0 [,) +oo ) ) |
| 148 |
147
|
ad2antrr |
|- ( ( ( ( ( ph /\ -. +oo e. ran ( F |` A ) ) /\ -. +oo e. ran ( F |` B ) ) /\ x e. ( ~P U i^i Fin ) ) /\ y e. x ) -> F : U --> ( 0 [,) +oo ) ) |
| 149 |
119
|
adantr |
|- ( ( x e. ( ~P U i^i Fin ) /\ y e. x ) -> x C_ U ) |
| 150 |
|
simpr |
|- ( ( x e. ( ~P U i^i Fin ) /\ y e. x ) -> y e. x ) |
| 151 |
149 150
|
sseldd |
|- ( ( x e. ( ~P U i^i Fin ) /\ y e. x ) -> y e. U ) |
| 152 |
151
|
adantll |
|- ( ( ( ( ( ph /\ -. +oo e. ran ( F |` A ) ) /\ -. +oo e. ran ( F |` B ) ) /\ x e. ( ~P U i^i Fin ) ) /\ y e. x ) -> y e. U ) |
| 153 |
148 152
|
ffvelcdmd |
|- ( ( ( ( ( ph /\ -. +oo e. ran ( F |` A ) ) /\ -. +oo e. ran ( F |` B ) ) /\ x e. ( ~P U i^i Fin ) ) /\ y e. x ) -> ( F ` y ) e. ( 0 [,) +oo ) ) |
| 154 |
127 153
|
sselid |
|- ( ( ( ( ( ph /\ -. +oo e. ran ( F |` A ) ) /\ -. +oo e. ran ( F |` B ) ) /\ x e. ( ~P U i^i Fin ) ) /\ y e. x ) -> ( F ` y ) e. RR ) |
| 155 |
154
|
recnd |
|- ( ( ( ( ( ph /\ -. +oo e. ran ( F |` A ) ) /\ -. +oo e. ran ( F |` B ) ) /\ x e. ( ~P U i^i Fin ) ) /\ y e. x ) -> ( F ` y ) e. CC ) |
| 156 |
110 124 126 155
|
fsumsplit |
|- ( ( ( ( ph /\ -. +oo e. ran ( F |` A ) ) /\ -. +oo e. ran ( F |` B ) ) /\ x e. ( ~P U i^i Fin ) ) -> sum_ y e. x ( F ` y ) = ( sum_ y e. ( x i^i A ) ( F ` y ) + sum_ y e. ( x i^i B ) ( F ` y ) ) ) |
| 157 |
|
infi |
|- ( x e. Fin -> ( x i^i A ) e. Fin ) |
| 158 |
125 157
|
syl |
|- ( x e. ( ~P U i^i Fin ) -> ( x i^i A ) e. Fin ) |
| 159 |
158
|
adantl |
|- ( ( ( ( ph /\ -. +oo e. ran ( F |` A ) ) /\ -. +oo e. ran ( F |` B ) ) /\ x e. ( ~P U i^i Fin ) ) -> ( x i^i A ) e. Fin ) |
| 160 |
|
simpl |
|- ( ( ( ( ( ph /\ -. +oo e. ran ( F |` A ) ) /\ -. +oo e. ran ( F |` B ) ) /\ x e. ( ~P U i^i Fin ) ) /\ y e. ( x i^i A ) ) -> ( ( ( ph /\ -. +oo e. ran ( F |` A ) ) /\ -. +oo e. ran ( F |` B ) ) /\ x e. ( ~P U i^i Fin ) ) ) |
| 161 |
|
elinel1 |
|- ( y e. ( x i^i A ) -> y e. x ) |
| 162 |
161
|
adantl |
|- ( ( ( ( ( ph /\ -. +oo e. ran ( F |` A ) ) /\ -. +oo e. ran ( F |` B ) ) /\ x e. ( ~P U i^i Fin ) ) /\ y e. ( x i^i A ) ) -> y e. x ) |
| 163 |
160 162 154
|
syl2anc |
|- ( ( ( ( ( ph /\ -. +oo e. ran ( F |` A ) ) /\ -. +oo e. ran ( F |` B ) ) /\ x e. ( ~P U i^i Fin ) ) /\ y e. ( x i^i A ) ) -> ( F ` y ) e. RR ) |
| 164 |
159 163
|
fsumrecl |
|- ( ( ( ( ph /\ -. +oo e. ran ( F |` A ) ) /\ -. +oo e. ran ( F |` B ) ) /\ x e. ( ~P U i^i Fin ) ) -> sum_ y e. ( x i^i A ) ( F ` y ) e. RR ) |
| 165 |
|
infi |
|- ( x e. Fin -> ( x i^i B ) e. Fin ) |
| 166 |
125 165
|
syl |
|- ( x e. ( ~P U i^i Fin ) -> ( x i^i B ) e. Fin ) |
| 167 |
166
|
adantl |
|- ( ( ( ( ph /\ -. +oo e. ran ( F |` A ) ) /\ -. +oo e. ran ( F |` B ) ) /\ x e. ( ~P U i^i Fin ) ) -> ( x i^i B ) e. Fin ) |
| 168 |
|
simpl |
|- ( ( ( ( ( ph /\ -. +oo e. ran ( F |` A ) ) /\ -. +oo e. ran ( F |` B ) ) /\ x e. ( ~P U i^i Fin ) ) /\ y e. ( x i^i B ) ) -> ( ( ( ph /\ -. +oo e. ran ( F |` A ) ) /\ -. +oo e. ran ( F |` B ) ) /\ x e. ( ~P U i^i Fin ) ) ) |
| 169 |
|
elinel1 |
|- ( y e. ( x i^i B ) -> y e. x ) |
| 170 |
169
|
adantl |
|- ( ( ( ( ( ph /\ -. +oo e. ran ( F |` A ) ) /\ -. +oo e. ran ( F |` B ) ) /\ x e. ( ~P U i^i Fin ) ) /\ y e. ( x i^i B ) ) -> y e. x ) |
| 171 |
168 170 154
|
syl2anc |
|- ( ( ( ( ( ph /\ -. +oo e. ran ( F |` A ) ) /\ -. +oo e. ran ( F |` B ) ) /\ x e. ( ~P U i^i Fin ) ) /\ y e. ( x i^i B ) ) -> ( F ` y ) e. RR ) |
| 172 |
167 171
|
fsumrecl |
|- ( ( ( ( ph /\ -. +oo e. ran ( F |` A ) ) /\ -. +oo e. ran ( F |` B ) ) /\ x e. ( ~P U i^i Fin ) ) -> sum_ y e. ( x i^i B ) ( F ` y ) e. RR ) |
| 173 |
|
rexadd |
|- ( ( sum_ y e. ( x i^i A ) ( F ` y ) e. RR /\ sum_ y e. ( x i^i B ) ( F ` y ) e. RR ) -> ( sum_ y e. ( x i^i A ) ( F ` y ) +e sum_ y e. ( x i^i B ) ( F ` y ) ) = ( sum_ y e. ( x i^i A ) ( F ` y ) + sum_ y e. ( x i^i B ) ( F ` y ) ) ) |
| 174 |
164 172 173
|
syl2anc |
|- ( ( ( ( ph /\ -. +oo e. ran ( F |` A ) ) /\ -. +oo e. ran ( F |` B ) ) /\ x e. ( ~P U i^i Fin ) ) -> ( sum_ y e. ( x i^i A ) ( F ` y ) +e sum_ y e. ( x i^i B ) ( F ` y ) ) = ( sum_ y e. ( x i^i A ) ( F ` y ) + sum_ y e. ( x i^i B ) ( F ` y ) ) ) |
| 175 |
174
|
eqcomd |
|- ( ( ( ( ph /\ -. +oo e. ran ( F |` A ) ) /\ -. +oo e. ran ( F |` B ) ) /\ x e. ( ~P U i^i Fin ) ) -> ( sum_ y e. ( x i^i A ) ( F ` y ) + sum_ y e. ( x i^i B ) ( F ` y ) ) = ( sum_ y e. ( x i^i A ) ( F ` y ) +e sum_ y e. ( x i^i B ) ( F ` y ) ) ) |
| 176 |
156 175
|
eqtrd |
|- ( ( ( ( ph /\ -. +oo e. ran ( F |` A ) ) /\ -. +oo e. ran ( F |` B ) ) /\ x e. ( ~P U i^i Fin ) ) -> sum_ y e. x ( F ` y ) = ( sum_ y e. ( x i^i A ) ( F ` y ) +e sum_ y e. ( x i^i B ) ( F ` y ) ) ) |
| 177 |
|
ressxr |
|- RR C_ RR* |
| 178 |
177 164
|
sselid |
|- ( ( ( ( ph /\ -. +oo e. ran ( F |` A ) ) /\ -. +oo e. ran ( F |` B ) ) /\ x e. ( ~P U i^i Fin ) ) -> sum_ y e. ( x i^i A ) ( F ` y ) e. RR* ) |
| 179 |
177 172
|
sselid |
|- ( ( ( ( ph /\ -. +oo e. ran ( F |` A ) ) /\ -. +oo e. ran ( F |` B ) ) /\ x e. ( ~P U i^i Fin ) ) -> sum_ y e. ( x i^i B ) ( F ` y ) e. RR* ) |
| 180 |
1
|
adantr |
|- ( ( ph /\ -. +oo e. ran ( F |` A ) ) -> A e. V ) |
| 181 |
33
|
adantr |
|- ( ( ph /\ -. +oo e. ran ( F |` A ) ) -> ( F |` A ) : A --> ( 0 [,] +oo ) ) |
| 182 |
|
simpr |
|- ( ( ph /\ -. +oo e. ran ( F |` A ) ) -> -. +oo e. ran ( F |` A ) ) |
| 183 |
181 182
|
fge0iccico |
|- ( ( ph /\ -. +oo e. ran ( F |` A ) ) -> ( F |` A ) : A --> ( 0 [,) +oo ) ) |
| 184 |
180 183
|
sge0reval |
|- ( ( ph /\ -. +oo e. ran ( F |` A ) ) -> ( sum^ ` ( F |` A ) ) = sup ( ran ( a e. ( ~P A i^i Fin ) |-> sum_ b e. a ( ( F |` A ) ` b ) ) , RR* , < ) ) |
| 185 |
184
|
eqcomd |
|- ( ( ph /\ -. +oo e. ran ( F |` A ) ) -> sup ( ran ( a e. ( ~P A i^i Fin ) |-> sum_ b e. a ( ( F |` A ) ` b ) ) , RR* , < ) = ( sum^ ` ( F |` A ) ) ) |
| 186 |
34
|
adantr |
|- ( ( ph /\ -. +oo e. ran ( F |` A ) ) -> ( sum^ ` ( F |` A ) ) e. RR* ) |
| 187 |
185 186
|
eqeltrd |
|- ( ( ph /\ -. +oo e. ran ( F |` A ) ) -> sup ( ran ( a e. ( ~P A i^i Fin ) |-> sum_ b e. a ( ( F |` A ) ` b ) ) , RR* , < ) e. RR* ) |
| 188 |
187
|
adantr |
|- ( ( ( ph /\ -. +oo e. ran ( F |` A ) ) /\ -. +oo e. ran ( F |` B ) ) -> sup ( ran ( a e. ( ~P A i^i Fin ) |-> sum_ b e. a ( ( F |` A ) ` b ) ) , RR* , < ) e. RR* ) |
| 189 |
2
|
adantr |
|- ( ( ph /\ -. +oo e. ran ( F |` B ) ) -> B e. W ) |
| 190 |
39
|
adantr |
|- ( ( ph /\ -. +oo e. ran ( F |` B ) ) -> ( F |` B ) : B --> ( 0 [,] +oo ) ) |
| 191 |
|
simpr |
|- ( ( ph /\ -. +oo e. ran ( F |` B ) ) -> -. +oo e. ran ( F |` B ) ) |
| 192 |
190 191
|
fge0iccico |
|- ( ( ph /\ -. +oo e. ran ( F |` B ) ) -> ( F |` B ) : B --> ( 0 [,) +oo ) ) |
| 193 |
189 192
|
sge0reval |
|- ( ( ph /\ -. +oo e. ran ( F |` B ) ) -> ( sum^ ` ( F |` B ) ) = sup ( ran ( c e. ( ~P B i^i Fin ) |-> sum_ d e. c ( ( F |` B ) ` d ) ) , RR* , < ) ) |
| 194 |
193
|
eqcomd |
|- ( ( ph /\ -. +oo e. ran ( F |` B ) ) -> sup ( ran ( c e. ( ~P B i^i Fin ) |-> sum_ d e. c ( ( F |` B ) ` d ) ) , RR* , < ) = ( sum^ ` ( F |` B ) ) ) |
| 195 |
41
|
adantr |
|- ( ( ph /\ -. +oo e. ran ( F |` B ) ) -> ( sum^ ` ( F |` B ) ) e. RR* ) |
| 196 |
194 195
|
eqeltrd |
|- ( ( ph /\ -. +oo e. ran ( F |` B ) ) -> sup ( ran ( c e. ( ~P B i^i Fin ) |-> sum_ d e. c ( ( F |` B ) ` d ) ) , RR* , < ) e. RR* ) |
| 197 |
196
|
adantlr |
|- ( ( ( ph /\ -. +oo e. ran ( F |` A ) ) /\ -. +oo e. ran ( F |` B ) ) -> sup ( ran ( c e. ( ~P B i^i Fin ) |-> sum_ d e. c ( ( F |` B ) ` d ) ) , RR* , < ) e. RR* ) |
| 198 |
188 197
|
jca |
|- ( ( ( ph /\ -. +oo e. ran ( F |` A ) ) /\ -. +oo e. ran ( F |` B ) ) -> ( sup ( ran ( a e. ( ~P A i^i Fin ) |-> sum_ b e. a ( ( F |` A ) ` b ) ) , RR* , < ) e. RR* /\ sup ( ran ( c e. ( ~P B i^i Fin ) |-> sum_ d e. c ( ( F |` B ) ` d ) ) , RR* , < ) e. RR* ) ) |
| 199 |
198
|
adantr |
|- ( ( ( ( ph /\ -. +oo e. ran ( F |` A ) ) /\ -. +oo e. ran ( F |` B ) ) /\ x e. ( ~P U i^i Fin ) ) -> ( sup ( ran ( a e. ( ~P A i^i Fin ) |-> sum_ b e. a ( ( F |` A ) ` b ) ) , RR* , < ) e. RR* /\ sup ( ran ( c e. ( ~P B i^i Fin ) |-> sum_ d e. c ( ( F |` B ) ` d ) ) , RR* , < ) e. RR* ) ) |
| 200 |
178 179 199
|
jca31 |
|- ( ( ( ( ph /\ -. +oo e. ran ( F |` A ) ) /\ -. +oo e. ran ( F |` B ) ) /\ x e. ( ~P U i^i Fin ) ) -> ( ( sum_ y e. ( x i^i A ) ( F ` y ) e. RR* /\ sum_ y e. ( x i^i B ) ( F ` y ) e. RR* ) /\ ( sup ( ran ( a e. ( ~P A i^i Fin ) |-> sum_ b e. a ( ( F |` A ) ` b ) ) , RR* , < ) e. RR* /\ sup ( ran ( c e. ( ~P B i^i Fin ) |-> sum_ d e. c ( ( F |` B ) ` d ) ) , RR* , < ) e. RR* ) ) ) |
| 201 |
180
|
adantr |
|- ( ( ( ph /\ -. +oo e. ran ( F |` A ) ) /\ x e. ( ~P U i^i Fin ) ) -> A e. V ) |
| 202 |
181
|
adantr |
|- ( ( ( ph /\ -. +oo e. ran ( F |` A ) ) /\ x e. ( ~P U i^i Fin ) ) -> ( F |` A ) : A --> ( 0 [,] +oo ) ) |
| 203 |
182
|
adantr |
|- ( ( ( ph /\ -. +oo e. ran ( F |` A ) ) /\ x e. ( ~P U i^i Fin ) ) -> -. +oo e. ran ( F |` A ) ) |
| 204 |
202 203
|
fge0iccico |
|- ( ( ( ph /\ -. +oo e. ran ( F |` A ) ) /\ x e. ( ~P U i^i Fin ) ) -> ( F |` A ) : A --> ( 0 [,) +oo ) ) |
| 205 |
100
|
a1i |
|- ( ( ( ph /\ -. +oo e. ran ( F |` A ) ) /\ x e. ( ~P U i^i Fin ) ) -> ( x i^i A ) C_ A ) |
| 206 |
158
|
adantl |
|- ( ( ( ph /\ -. +oo e. ran ( F |` A ) ) /\ x e. ( ~P U i^i Fin ) ) -> ( x i^i A ) e. Fin ) |
| 207 |
201 204 205 206
|
fsumlesge0 |
|- ( ( ( ph /\ -. +oo e. ran ( F |` A ) ) /\ x e. ( ~P U i^i Fin ) ) -> sum_ y e. ( x i^i A ) ( ( F |` A ) ` y ) <_ ( sum^ ` ( F |` A ) ) ) |
| 208 |
100
|
sseli |
|- ( y e. ( x i^i A ) -> y e. A ) |
| 209 |
|
fvres |
|- ( y e. A -> ( ( F |` A ) ` y ) = ( F ` y ) ) |
| 210 |
208 209
|
syl |
|- ( y e. ( x i^i A ) -> ( ( F |` A ) ` y ) = ( F ` y ) ) |
| 211 |
210
|
adantl |
|- ( ( ( ( ph /\ -. +oo e. ran ( F |` A ) ) /\ x e. ( ~P U i^i Fin ) ) /\ y e. ( x i^i A ) ) -> ( ( F |` A ) ` y ) = ( F ` y ) ) |
| 212 |
211
|
sumeq2dv |
|- ( ( ( ph /\ -. +oo e. ran ( F |` A ) ) /\ x e. ( ~P U i^i Fin ) ) -> sum_ y e. ( x i^i A ) ( ( F |` A ) ` y ) = sum_ y e. ( x i^i A ) ( F ` y ) ) |
| 213 |
184
|
adantr |
|- ( ( ( ph /\ -. +oo e. ran ( F |` A ) ) /\ x e. ( ~P U i^i Fin ) ) -> ( sum^ ` ( F |` A ) ) = sup ( ran ( a e. ( ~P A i^i Fin ) |-> sum_ b e. a ( ( F |` A ) ` b ) ) , RR* , < ) ) |
| 214 |
212 213
|
breq12d |
|- ( ( ( ph /\ -. +oo e. ran ( F |` A ) ) /\ x e. ( ~P U i^i Fin ) ) -> ( sum_ y e. ( x i^i A ) ( ( F |` A ) ` y ) <_ ( sum^ ` ( F |` A ) ) <-> sum_ y e. ( x i^i A ) ( F ` y ) <_ sup ( ran ( a e. ( ~P A i^i Fin ) |-> sum_ b e. a ( ( F |` A ) ` b ) ) , RR* , < ) ) ) |
| 215 |
207 214
|
mpbid |
|- ( ( ( ph /\ -. +oo e. ran ( F |` A ) ) /\ x e. ( ~P U i^i Fin ) ) -> sum_ y e. ( x i^i A ) ( F ` y ) <_ sup ( ran ( a e. ( ~P A i^i Fin ) |-> sum_ b e. a ( ( F |` A ) ` b ) ) , RR* , < ) ) |
| 216 |
215
|
adantlr |
|- ( ( ( ( ph /\ -. +oo e. ran ( F |` A ) ) /\ -. +oo e. ran ( F |` B ) ) /\ x e. ( ~P U i^i Fin ) ) -> sum_ y e. ( x i^i A ) ( F ` y ) <_ sup ( ran ( a e. ( ~P A i^i Fin ) |-> sum_ b e. a ( ( F |` A ) ` b ) ) , RR* , < ) ) |
| 217 |
189
|
adantr |
|- ( ( ( ph /\ -. +oo e. ran ( F |` B ) ) /\ x e. ( ~P U i^i Fin ) ) -> B e. W ) |
| 218 |
190
|
adantr |
|- ( ( ( ph /\ -. +oo e. ran ( F |` B ) ) /\ x e. ( ~P U i^i Fin ) ) -> ( F |` B ) : B --> ( 0 [,] +oo ) ) |
| 219 |
191
|
adantr |
|- ( ( ( ph /\ -. +oo e. ran ( F |` B ) ) /\ x e. ( ~P U i^i Fin ) ) -> -. +oo e. ran ( F |` B ) ) |
| 220 |
218 219
|
fge0iccico |
|- ( ( ( ph /\ -. +oo e. ran ( F |` B ) ) /\ x e. ( ~P U i^i Fin ) ) -> ( F |` B ) : B --> ( 0 [,) +oo ) ) |
| 221 |
103
|
a1i |
|- ( ( ( ph /\ -. +oo e. ran ( F |` B ) ) /\ x e. ( ~P U i^i Fin ) ) -> ( x i^i B ) C_ B ) |
| 222 |
166
|
adantl |
|- ( ( ( ph /\ -. +oo e. ran ( F |` B ) ) /\ x e. ( ~P U i^i Fin ) ) -> ( x i^i B ) e. Fin ) |
| 223 |
217 220 221 222
|
fsumlesge0 |
|- ( ( ( ph /\ -. +oo e. ran ( F |` B ) ) /\ x e. ( ~P U i^i Fin ) ) -> sum_ y e. ( x i^i B ) ( ( F |` B ) ` y ) <_ ( sum^ ` ( F |` B ) ) ) |
| 224 |
103
|
sseli |
|- ( y e. ( x i^i B ) -> y e. B ) |
| 225 |
|
fvres |
|- ( y e. B -> ( ( F |` B ) ` y ) = ( F ` y ) ) |
| 226 |
224 225
|
syl |
|- ( y e. ( x i^i B ) -> ( ( F |` B ) ` y ) = ( F ` y ) ) |
| 227 |
226
|
adantl |
|- ( ( ( ( ph /\ -. +oo e. ran ( F |` B ) ) /\ x e. ( ~P U i^i Fin ) ) /\ y e. ( x i^i B ) ) -> ( ( F |` B ) ` y ) = ( F ` y ) ) |
| 228 |
227
|
sumeq2dv |
|- ( ( ( ph /\ -. +oo e. ran ( F |` B ) ) /\ x e. ( ~P U i^i Fin ) ) -> sum_ y e. ( x i^i B ) ( ( F |` B ) ` y ) = sum_ y e. ( x i^i B ) ( F ` y ) ) |
| 229 |
193
|
adantr |
|- ( ( ( ph /\ -. +oo e. ran ( F |` B ) ) /\ x e. ( ~P U i^i Fin ) ) -> ( sum^ ` ( F |` B ) ) = sup ( ran ( c e. ( ~P B i^i Fin ) |-> sum_ d e. c ( ( F |` B ) ` d ) ) , RR* , < ) ) |
| 230 |
228 229
|
breq12d |
|- ( ( ( ph /\ -. +oo e. ran ( F |` B ) ) /\ x e. ( ~P U i^i Fin ) ) -> ( sum_ y e. ( x i^i B ) ( ( F |` B ) ` y ) <_ ( sum^ ` ( F |` B ) ) <-> sum_ y e. ( x i^i B ) ( F ` y ) <_ sup ( ran ( c e. ( ~P B i^i Fin ) |-> sum_ d e. c ( ( F |` B ) ` d ) ) , RR* , < ) ) ) |
| 231 |
223 230
|
mpbid |
|- ( ( ( ph /\ -. +oo e. ran ( F |` B ) ) /\ x e. ( ~P U i^i Fin ) ) -> sum_ y e. ( x i^i B ) ( F ` y ) <_ sup ( ran ( c e. ( ~P B i^i Fin ) |-> sum_ d e. c ( ( F |` B ) ` d ) ) , RR* , < ) ) |
| 232 |
231
|
adantllr |
|- ( ( ( ( ph /\ -. +oo e. ran ( F |` A ) ) /\ -. +oo e. ran ( F |` B ) ) /\ x e. ( ~P U i^i Fin ) ) -> sum_ y e. ( x i^i B ) ( F ` y ) <_ sup ( ran ( c e. ( ~P B i^i Fin ) |-> sum_ d e. c ( ( F |` B ) ` d ) ) , RR* , < ) ) |
| 233 |
216 232
|
jca |
|- ( ( ( ( ph /\ -. +oo e. ran ( F |` A ) ) /\ -. +oo e. ran ( F |` B ) ) /\ x e. ( ~P U i^i Fin ) ) -> ( sum_ y e. ( x i^i A ) ( F ` y ) <_ sup ( ran ( a e. ( ~P A i^i Fin ) |-> sum_ b e. a ( ( F |` A ) ` b ) ) , RR* , < ) /\ sum_ y e. ( x i^i B ) ( F ` y ) <_ sup ( ran ( c e. ( ~P B i^i Fin ) |-> sum_ d e. c ( ( F |` B ) ` d ) ) , RR* , < ) ) ) |
| 234 |
|
xle2add |
|- ( ( ( sum_ y e. ( x i^i A ) ( F ` y ) e. RR* /\ sum_ y e. ( x i^i B ) ( F ` y ) e. RR* ) /\ ( sup ( ran ( a e. ( ~P A i^i Fin ) |-> sum_ b e. a ( ( F |` A ) ` b ) ) , RR* , < ) e. RR* /\ sup ( ran ( c e. ( ~P B i^i Fin ) |-> sum_ d e. c ( ( F |` B ) ` d ) ) , RR* , < ) e. RR* ) ) -> ( ( sum_ y e. ( x i^i A ) ( F ` y ) <_ sup ( ran ( a e. ( ~P A i^i Fin ) |-> sum_ b e. a ( ( F |` A ) ` b ) ) , RR* , < ) /\ sum_ y e. ( x i^i B ) ( F ` y ) <_ sup ( ran ( c e. ( ~P B i^i Fin ) |-> sum_ d e. c ( ( F |` B ) ` d ) ) , RR* , < ) ) -> ( sum_ y e. ( x i^i A ) ( F ` y ) +e sum_ y e. ( x i^i B ) ( F ` y ) ) <_ ( sup ( ran ( a e. ( ~P A i^i Fin ) |-> sum_ b e. a ( ( F |` A ) ` b ) ) , RR* , < ) +e sup ( ran ( c e. ( ~P B i^i Fin ) |-> sum_ d e. c ( ( F |` B ) ` d ) ) , RR* , < ) ) ) ) |
| 235 |
200 233 234
|
sylc |
|- ( ( ( ( ph /\ -. +oo e. ran ( F |` A ) ) /\ -. +oo e. ran ( F |` B ) ) /\ x e. ( ~P U i^i Fin ) ) -> ( sum_ y e. ( x i^i A ) ( F ` y ) +e sum_ y e. ( x i^i B ) ( F ` y ) ) <_ ( sup ( ran ( a e. ( ~P A i^i Fin ) |-> sum_ b e. a ( ( F |` A ) ` b ) ) , RR* , < ) +e sup ( ran ( c e. ( ~P B i^i Fin ) |-> sum_ d e. c ( ( F |` B ) ` d ) ) , RR* , < ) ) ) |
| 236 |
176 235
|
eqbrtrd |
|- ( ( ( ( ph /\ -. +oo e. ran ( F |` A ) ) /\ -. +oo e. ran ( F |` B ) ) /\ x e. ( ~P U i^i Fin ) ) -> sum_ y e. x ( F ` y ) <_ ( sup ( ran ( a e. ( ~P A i^i Fin ) |-> sum_ b e. a ( ( F |` A ) ` b ) ) , RR* , < ) +e sup ( ran ( c e. ( ~P B i^i Fin ) |-> sum_ d e. c ( ( F |` B ) ` d ) ) , RR* , < ) ) ) |
| 237 |
236
|
3adant3 |
|- ( ( ( ( ph /\ -. +oo e. ran ( F |` A ) ) /\ -. +oo e. ran ( F |` B ) ) /\ x e. ( ~P U i^i Fin ) /\ z = sum_ y e. x ( F ` y ) ) -> sum_ y e. x ( F ` y ) <_ ( sup ( ran ( a e. ( ~P A i^i Fin ) |-> sum_ b e. a ( ( F |` A ) ` b ) ) , RR* , < ) +e sup ( ran ( c e. ( ~P B i^i Fin ) |-> sum_ d e. c ( ( F |` B ) ` d ) ) , RR* , < ) ) ) |
| 238 |
98 237
|
eqbrtrd |
|- ( ( ( ( ph /\ -. +oo e. ran ( F |` A ) ) /\ -. +oo e. ran ( F |` B ) ) /\ x e. ( ~P U i^i Fin ) /\ z = sum_ y e. x ( F ` y ) ) -> z <_ ( sup ( ran ( a e. ( ~P A i^i Fin ) |-> sum_ b e. a ( ( F |` A ) ` b ) ) , RR* , < ) +e sup ( ran ( c e. ( ~P B i^i Fin ) |-> sum_ d e. c ( ( F |` B ) ` d ) ) , RR* , < ) ) ) |
| 239 |
238
|
3exp |
|- ( ( ( ph /\ -. +oo e. ran ( F |` A ) ) /\ -. +oo e. ran ( F |` B ) ) -> ( x e. ( ~P U i^i Fin ) -> ( z = sum_ y e. x ( F ` y ) -> z <_ ( sup ( ran ( a e. ( ~P A i^i Fin ) |-> sum_ b e. a ( ( F |` A ) ` b ) ) , RR* , < ) +e sup ( ran ( c e. ( ~P B i^i Fin ) |-> sum_ d e. c ( ( F |` B ) ` d ) ) , RR* , < ) ) ) ) ) |
| 240 |
239
|
rexlimdv |
|- ( ( ( ph /\ -. +oo e. ran ( F |` A ) ) /\ -. +oo e. ran ( F |` B ) ) -> ( E. x e. ( ~P U i^i Fin ) z = sum_ y e. x ( F ` y ) -> z <_ ( sup ( ran ( a e. ( ~P A i^i Fin ) |-> sum_ b e. a ( ( F |` A ) ` b ) ) , RR* , < ) +e sup ( ran ( c e. ( ~P B i^i Fin ) |-> sum_ d e. c ( ( F |` B ) ` d ) ) , RR* , < ) ) ) ) |
| 241 |
240
|
adantr |
|- ( ( ( ( ph /\ -. +oo e. ran ( F |` A ) ) /\ -. +oo e. ran ( F |` B ) ) /\ z e. ran ( x e. ( ~P U i^i Fin ) |-> sum_ y e. x ( F ` y ) ) ) -> ( E. x e. ( ~P U i^i Fin ) z = sum_ y e. x ( F ` y ) -> z <_ ( sup ( ran ( a e. ( ~P A i^i Fin ) |-> sum_ b e. a ( ( F |` A ) ` b ) ) , RR* , < ) +e sup ( ran ( c e. ( ~P B i^i Fin ) |-> sum_ d e. c ( ( F |` B ) ` d ) ) , RR* , < ) ) ) ) |
| 242 |
97 241
|
mpd |
|- ( ( ( ( ph /\ -. +oo e. ran ( F |` A ) ) /\ -. +oo e. ran ( F |` B ) ) /\ z e. ran ( x e. ( ~P U i^i Fin ) |-> sum_ y e. x ( F ` y ) ) ) -> z <_ ( sup ( ran ( a e. ( ~P A i^i Fin ) |-> sum_ b e. a ( ( F |` A ) ` b ) ) , RR* , < ) +e sup ( ran ( c e. ( ~P B i^i Fin ) |-> sum_ d e. c ( ( F |` B ) ` d ) ) , RR* , < ) ) ) |
| 243 |
242
|
ralrimiva |
|- ( ( ( ph /\ -. +oo e. ran ( F |` A ) ) /\ -. +oo e. ran ( F |` B ) ) -> A. z e. ran ( x e. ( ~P U i^i Fin ) |-> sum_ y e. x ( F ` y ) ) z <_ ( sup ( ran ( a e. ( ~P A i^i Fin ) |-> sum_ b e. a ( ( F |` A ) ` b ) ) , RR* , < ) +e sup ( ran ( c e. ( ~P B i^i Fin ) |-> sum_ d e. c ( ( F |` B ) ` d ) ) , RR* , < ) ) ) |
| 244 |
147
|
sge0rnre |
|- ( ( ( ph /\ -. +oo e. ran ( F |` A ) ) /\ -. +oo e. ran ( F |` B ) ) -> ran ( x e. ( ~P U i^i Fin ) |-> sum_ y e. x ( F ` y ) ) C_ RR ) |
| 245 |
177
|
a1i |
|- ( ( ( ph /\ -. +oo e. ran ( F |` A ) ) /\ -. +oo e. ran ( F |` B ) ) -> RR C_ RR* ) |
| 246 |
244 245
|
sstrd |
|- ( ( ( ph /\ -. +oo e. ran ( F |` A ) ) /\ -. +oo e. ran ( F |` B ) ) -> ran ( x e. ( ~P U i^i Fin ) |-> sum_ y e. x ( F ` y ) ) C_ RR* ) |
| 247 |
188 197
|
xaddcld |
|- ( ( ( ph /\ -. +oo e. ran ( F |` A ) ) /\ -. +oo e. ran ( F |` B ) ) -> ( sup ( ran ( a e. ( ~P A i^i Fin ) |-> sum_ b e. a ( ( F |` A ) ` b ) ) , RR* , < ) +e sup ( ran ( c e. ( ~P B i^i Fin ) |-> sum_ d e. c ( ( F |` B ) ` d ) ) , RR* , < ) ) e. RR* ) |
| 248 |
|
supxrleub |
|- ( ( ran ( x e. ( ~P U i^i Fin ) |-> sum_ y e. x ( F ` y ) ) C_ RR* /\ ( sup ( ran ( a e. ( ~P A i^i Fin ) |-> sum_ b e. a ( ( F |` A ) ` b ) ) , RR* , < ) +e sup ( ran ( c e. ( ~P B i^i Fin ) |-> sum_ d e. c ( ( F |` B ) ` d ) ) , RR* , < ) ) e. RR* ) -> ( sup ( ran ( x e. ( ~P U i^i Fin ) |-> sum_ y e. x ( F ` y ) ) , RR* , < ) <_ ( sup ( ran ( a e. ( ~P A i^i Fin ) |-> sum_ b e. a ( ( F |` A ) ` b ) ) , RR* , < ) +e sup ( ran ( c e. ( ~P B i^i Fin ) |-> sum_ d e. c ( ( F |` B ) ` d ) ) , RR* , < ) ) <-> A. z e. ran ( x e. ( ~P U i^i Fin ) |-> sum_ y e. x ( F ` y ) ) z <_ ( sup ( ran ( a e. ( ~P A i^i Fin ) |-> sum_ b e. a ( ( F |` A ) ` b ) ) , RR* , < ) +e sup ( ran ( c e. ( ~P B i^i Fin ) |-> sum_ d e. c ( ( F |` B ) ` d ) ) , RR* , < ) ) ) ) |
| 249 |
246 247 248
|
syl2anc |
|- ( ( ( ph /\ -. +oo e. ran ( F |` A ) ) /\ -. +oo e. ran ( F |` B ) ) -> ( sup ( ran ( x e. ( ~P U i^i Fin ) |-> sum_ y e. x ( F ` y ) ) , RR* , < ) <_ ( sup ( ran ( a e. ( ~P A i^i Fin ) |-> sum_ b e. a ( ( F |` A ) ` b ) ) , RR* , < ) +e sup ( ran ( c e. ( ~P B i^i Fin ) |-> sum_ d e. c ( ( F |` B ) ` d ) ) , RR* , < ) ) <-> A. z e. ran ( x e. ( ~P U i^i Fin ) |-> sum_ y e. x ( F ` y ) ) z <_ ( sup ( ran ( a e. ( ~P A i^i Fin ) |-> sum_ b e. a ( ( F |` A ) ` b ) ) , RR* , < ) +e sup ( ran ( c e. ( ~P B i^i Fin ) |-> sum_ d e. c ( ( F |` B ) ` d ) ) , RR* , < ) ) ) ) |
| 250 |
243 249
|
mpbird |
|- ( ( ( ph /\ -. +oo e. ran ( F |` A ) ) /\ -. +oo e. ran ( F |` B ) ) -> sup ( ran ( x e. ( ~P U i^i Fin ) |-> sum_ y e. x ( F ` y ) ) , RR* , < ) <_ ( sup ( ran ( a e. ( ~P A i^i Fin ) |-> sum_ b e. a ( ( F |` A ) ` b ) ) , RR* , < ) +e sup ( ran ( c e. ( ~P B i^i Fin ) |-> sum_ d e. c ( ( F |` B ) ` d ) ) , RR* , < ) ) ) |
| 251 |
14
|
ad2antrr |
|- ( ( ( ph /\ -. +oo e. ran ( F |` A ) ) /\ -. +oo e. ran ( F |` B ) ) -> U e. _V ) |
| 252 |
251 147
|
sge0reval |
|- ( ( ( ph /\ -. +oo e. ran ( F |` A ) ) /\ -. +oo e. ran ( F |` B ) ) -> ( sum^ ` F ) = sup ( ran ( x e. ( ~P U i^i Fin ) |-> sum_ y e. x ( F ` y ) ) , RR* , < ) ) |
| 253 |
184
|
adantr |
|- ( ( ( ph /\ -. +oo e. ran ( F |` A ) ) /\ -. +oo e. ran ( F |` B ) ) -> ( sum^ ` ( F |` A ) ) = sup ( ran ( a e. ( ~P A i^i Fin ) |-> sum_ b e. a ( ( F |` A ) ` b ) ) , RR* , < ) ) |
| 254 |
193
|
adantlr |
|- ( ( ( ph /\ -. +oo e. ran ( F |` A ) ) /\ -. +oo e. ran ( F |` B ) ) -> ( sum^ ` ( F |` B ) ) = sup ( ran ( c e. ( ~P B i^i Fin ) |-> sum_ d e. c ( ( F |` B ) ` d ) ) , RR* , < ) ) |
| 255 |
253 254
|
oveq12d |
|- ( ( ( ph /\ -. +oo e. ran ( F |` A ) ) /\ -. +oo e. ran ( F |` B ) ) -> ( ( sum^ ` ( F |` A ) ) +e ( sum^ ` ( F |` B ) ) ) = ( sup ( ran ( a e. ( ~P A i^i Fin ) |-> sum_ b e. a ( ( F |` A ) ` b ) ) , RR* , < ) +e sup ( ran ( c e. ( ~P B i^i Fin ) |-> sum_ d e. c ( ( F |` B ) ` d ) ) , RR* , < ) ) ) |
| 256 |
250 252 255
|
3brtr4d |
|- ( ( ( ph /\ -. +oo e. ran ( F |` A ) ) /\ -. +oo e. ran ( F |` B ) ) -> ( sum^ ` F ) <_ ( ( sum^ ` ( F |` A ) ) +e ( sum^ ` ( F |` B ) ) ) ) |
| 257 |
91 256
|
pm2.61dan |
|- ( ( ph /\ -. +oo e. ran ( F |` A ) ) -> ( sum^ ` F ) <_ ( ( sum^ ` ( F |` A ) ) +e ( sum^ ` ( F |` B ) ) ) ) |
| 258 |
69 257
|
pm2.61dan |
|- ( ph -> ( sum^ ` F ) <_ ( ( sum^ ` ( F |` A ) ) +e ( sum^ ` ( F |` B ) ) ) ) |
| 259 |
258
|
adantr |
|- ( ( ph /\ ( sum^ ` F ) = +oo ) -> ( sum^ ` F ) <_ ( ( sum^ ` ( F |` A ) ) +e ( sum^ ` ( F |` B ) ) ) ) |
| 260 |
|
pnfge |
|- ( ( ( sum^ ` ( F |` A ) ) +e ( sum^ ` ( F |` B ) ) ) e. RR* -> ( ( sum^ ` ( F |` A ) ) +e ( sum^ ` ( F |` B ) ) ) <_ +oo ) |
| 261 |
42 260
|
syl |
|- ( ph -> ( ( sum^ ` ( F |` A ) ) +e ( sum^ ` ( F |` B ) ) ) <_ +oo ) |
| 262 |
261
|
adantr |
|- ( ( ph /\ ( sum^ ` F ) = +oo ) -> ( ( sum^ ` ( F |` A ) ) +e ( sum^ ` ( F |` B ) ) ) <_ +oo ) |
| 263 |
|
id |
|- ( ( sum^ ` F ) = +oo -> ( sum^ ` F ) = +oo ) |
| 264 |
263
|
eqcomd |
|- ( ( sum^ ` F ) = +oo -> +oo = ( sum^ ` F ) ) |
| 265 |
264
|
adantl |
|- ( ( ph /\ ( sum^ ` F ) = +oo ) -> +oo = ( sum^ ` F ) ) |
| 266 |
262 265
|
breqtrd |
|- ( ( ph /\ ( sum^ ` F ) = +oo ) -> ( ( sum^ ` ( F |` A ) ) +e ( sum^ ` ( F |` B ) ) ) <_ ( sum^ ` F ) ) |
| 267 |
29 43 259 266
|
xrletrid |
|- ( ( ph /\ ( sum^ ` F ) = +oo ) -> ( sum^ ` F ) = ( ( sum^ ` ( F |` A ) ) +e ( sum^ ` ( F |` B ) ) ) ) |
| 268 |
22 27 267
|
syl2anc |
|- ( ( ph /\ -. ( sum^ ` F ) e. RR ) -> ( sum^ ` F ) = ( ( sum^ ` ( F |` A ) ) +e ( sum^ ` ( F |` B ) ) ) ) |
| 269 |
21 268
|
pm2.61dan |
|- ( ph -> ( sum^ ` F ) = ( ( sum^ ` ( F |` A ) ) +e ( sum^ ` ( F |` B ) ) ) ) |