Step |
Hyp |
Ref |
Expression |
1 |
|
sge0lempt.xph |
|- F/ x ph |
2 |
|
sge0lempt.a |
|- ( ph -> A e. V ) |
3 |
|
sge0lempt.b |
|- ( ( ph /\ x e. A ) -> B e. ( 0 [,] +oo ) ) |
4 |
|
sge0lempt.c |
|- ( ( ph /\ x e. A ) -> C e. ( 0 [,] +oo ) ) |
5 |
|
sge0lempt.le |
|- ( ( ph /\ x e. A ) -> B <_ C ) |
6 |
|
eqid |
|- ( x e. A |-> B ) = ( x e. A |-> B ) |
7 |
1 3 6
|
fmptdf |
|- ( ph -> ( x e. A |-> B ) : A --> ( 0 [,] +oo ) ) |
8 |
|
eqid |
|- ( x e. A |-> C ) = ( x e. A |-> C ) |
9 |
1 4 8
|
fmptdf |
|- ( ph -> ( x e. A |-> C ) : A --> ( 0 [,] +oo ) ) |
10 |
|
nfv |
|- F/ x y e. A |
11 |
1 10
|
nfan |
|- F/ x ( ph /\ y e. A ) |
12 |
|
nfcv |
|- F/_ x y |
13 |
12
|
nfcsb1 |
|- F/_ x [_ y / x ]_ B |
14 |
|
nfcv |
|- F/_ x <_ |
15 |
12
|
nfcsb1 |
|- F/_ x [_ y / x ]_ C |
16 |
13 14 15
|
nfbr |
|- F/ x [_ y / x ]_ B <_ [_ y / x ]_ C |
17 |
11 16
|
nfim |
|- F/ x ( ( ph /\ y e. A ) -> [_ y / x ]_ B <_ [_ y / x ]_ C ) |
18 |
|
eleq1w |
|- ( x = y -> ( x e. A <-> y e. A ) ) |
19 |
18
|
anbi2d |
|- ( x = y -> ( ( ph /\ x e. A ) <-> ( ph /\ y e. A ) ) ) |
20 |
|
csbeq1a |
|- ( x = y -> B = [_ y / x ]_ B ) |
21 |
|
csbeq1a |
|- ( x = y -> C = [_ y / x ]_ C ) |
22 |
20 21
|
breq12d |
|- ( x = y -> ( B <_ C <-> [_ y / x ]_ B <_ [_ y / x ]_ C ) ) |
23 |
19 22
|
imbi12d |
|- ( x = y -> ( ( ( ph /\ x e. A ) -> B <_ C ) <-> ( ( ph /\ y e. A ) -> [_ y / x ]_ B <_ [_ y / x ]_ C ) ) ) |
24 |
17 23 5
|
chvarfv |
|- ( ( ph /\ y e. A ) -> [_ y / x ]_ B <_ [_ y / x ]_ C ) |
25 |
|
simpr |
|- ( ( ph /\ y e. A ) -> y e. A ) |
26 |
13
|
nfel1 |
|- F/ x [_ y / x ]_ B e. ( 0 [,] +oo ) |
27 |
11 26
|
nfim |
|- F/ x ( ( ph /\ y e. A ) -> [_ y / x ]_ B e. ( 0 [,] +oo ) ) |
28 |
20
|
eleq1d |
|- ( x = y -> ( B e. ( 0 [,] +oo ) <-> [_ y / x ]_ B e. ( 0 [,] +oo ) ) ) |
29 |
19 28
|
imbi12d |
|- ( x = y -> ( ( ( ph /\ x e. A ) -> B e. ( 0 [,] +oo ) ) <-> ( ( ph /\ y e. A ) -> [_ y / x ]_ B e. ( 0 [,] +oo ) ) ) ) |
30 |
27 29 3
|
chvarfv |
|- ( ( ph /\ y e. A ) -> [_ y / x ]_ B e. ( 0 [,] +oo ) ) |
31 |
12 13 20 6
|
fvmptf |
|- ( ( y e. A /\ [_ y / x ]_ B e. ( 0 [,] +oo ) ) -> ( ( x e. A |-> B ) ` y ) = [_ y / x ]_ B ) |
32 |
25 30 31
|
syl2anc |
|- ( ( ph /\ y e. A ) -> ( ( x e. A |-> B ) ` y ) = [_ y / x ]_ B ) |
33 |
|
nfcv |
|- F/_ x ( 0 [,] +oo ) |
34 |
15 33
|
nfel |
|- F/ x [_ y / x ]_ C e. ( 0 [,] +oo ) |
35 |
11 34
|
nfim |
|- F/ x ( ( ph /\ y e. A ) -> [_ y / x ]_ C e. ( 0 [,] +oo ) ) |
36 |
21
|
eleq1d |
|- ( x = y -> ( C e. ( 0 [,] +oo ) <-> [_ y / x ]_ C e. ( 0 [,] +oo ) ) ) |
37 |
19 36
|
imbi12d |
|- ( x = y -> ( ( ( ph /\ x e. A ) -> C e. ( 0 [,] +oo ) ) <-> ( ( ph /\ y e. A ) -> [_ y / x ]_ C e. ( 0 [,] +oo ) ) ) ) |
38 |
35 37 4
|
chvarfv |
|- ( ( ph /\ y e. A ) -> [_ y / x ]_ C e. ( 0 [,] +oo ) ) |
39 |
12 15 21 8
|
fvmptf |
|- ( ( y e. A /\ [_ y / x ]_ C e. ( 0 [,] +oo ) ) -> ( ( x e. A |-> C ) ` y ) = [_ y / x ]_ C ) |
40 |
25 38 39
|
syl2anc |
|- ( ( ph /\ y e. A ) -> ( ( x e. A |-> C ) ` y ) = [_ y / x ]_ C ) |
41 |
32 40
|
breq12d |
|- ( ( ph /\ y e. A ) -> ( ( ( x e. A |-> B ) ` y ) <_ ( ( x e. A |-> C ) ` y ) <-> [_ y / x ]_ B <_ [_ y / x ]_ C ) ) |
42 |
24 41
|
mpbird |
|- ( ( ph /\ y e. A ) -> ( ( x e. A |-> B ) ` y ) <_ ( ( x e. A |-> C ) ` y ) ) |
43 |
2 7 9 42
|
sge0le |
|- ( ph -> ( sum^ ` ( x e. A |-> B ) ) <_ ( sum^ ` ( x e. A |-> C ) ) ) |