Metamath Proof Explorer


Theorem sge0lempt

Description: If all of the terms of sums compare, so do the sums. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses sge0lempt.xph xφ
sge0lempt.a φAV
sge0lempt.b φxAB0+∞
sge0lempt.c φxAC0+∞
sge0lempt.le φxABC
Assertion sge0lempt φsum^xABsum^xAC

Proof

Step Hyp Ref Expression
1 sge0lempt.xph xφ
2 sge0lempt.a φAV
3 sge0lempt.b φxAB0+∞
4 sge0lempt.c φxAC0+∞
5 sge0lempt.le φxABC
6 eqid xAB=xAB
7 1 3 6 fmptdf φxAB:A0+∞
8 eqid xAC=xAC
9 1 4 8 fmptdf φxAC:A0+∞
10 nfv xyA
11 1 10 nfan xφyA
12 nfcv _xy
13 12 nfcsb1 _xy/xB
14 nfcv _x
15 12 nfcsb1 _xy/xC
16 13 14 15 nfbr xy/xBy/xC
17 11 16 nfim xφyAy/xBy/xC
18 eleq1w x=yxAyA
19 18 anbi2d x=yφxAφyA
20 csbeq1a x=yB=y/xB
21 csbeq1a x=yC=y/xC
22 20 21 breq12d x=yBCy/xBy/xC
23 19 22 imbi12d x=yφxABCφyAy/xBy/xC
24 17 23 5 chvarfv φyAy/xBy/xC
25 simpr φyAyA
26 13 nfel1 xy/xB0+∞
27 11 26 nfim xφyAy/xB0+∞
28 20 eleq1d x=yB0+∞y/xB0+∞
29 19 28 imbi12d x=yφxAB0+∞φyAy/xB0+∞
30 27 29 3 chvarfv φyAy/xB0+∞
31 12 13 20 6 fvmptf yAy/xB0+∞xABy=y/xB
32 25 30 31 syl2anc φyAxABy=y/xB
33 nfcv _x0+∞
34 15 33 nfel xy/xC0+∞
35 11 34 nfim xφyAy/xC0+∞
36 21 eleq1d x=yC0+∞y/xC0+∞
37 19 36 imbi12d x=yφxAC0+∞φyAy/xC0+∞
38 35 37 4 chvarfv φyAy/xC0+∞
39 12 15 21 8 fvmptf yAy/xC0+∞xACy=y/xC
40 25 38 39 syl2anc φyAxACy=y/xC
41 32 40 breq12d φyAxAByxACyy/xBy/xC
42 24 41 mpbird φyAxAByxACy
43 2 7 9 42 sge0le φsum^xABsum^xAC