Metamath Proof Explorer


Theorem sge0le

Description: If all of the terms of sums compare, so do the sums. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses sge0le.x φ X V
sge0le.F φ F : X 0 +∞
sge0le.g φ G : X 0 +∞
sge0le.le φ x X F x G x
Assertion sge0le φ sum^ F sum^ G

Proof

Step Hyp Ref Expression
1 sge0le.x φ X V
2 sge0le.F φ F : X 0 +∞
3 sge0le.g φ G : X 0 +∞
4 sge0le.le φ x X F x G x
5 1 2 sge0xrcl φ sum^ F *
6 pnfge sum^ F * sum^ F +∞
7 5 6 syl φ sum^ F +∞
8 7 adantr φ sum^ G = +∞ sum^ F +∞
9 id sum^ G = +∞ sum^ G = +∞
10 9 eqcomd sum^ G = +∞ +∞ = sum^ G
11 10 adantl φ sum^ G = +∞ +∞ = sum^ G
12 8 11 breqtrd φ sum^ G = +∞ sum^ F sum^ G
13 elinel2 y 𝒫 X Fin y Fin
14 13 adantl φ ¬ sum^ G = +∞ y 𝒫 X Fin y Fin
15 2 adantr φ ¬ sum^ G = +∞ F : X 0 +∞
16 1 adantr φ +∞ ran F X V
17 3 adantr φ +∞ ran F G : X 0 +∞
18 simpr φ +∞ ran F +∞ ran F
19 2 ffnd φ F Fn X
20 fvelrnb F Fn X +∞ ran F x X F x = +∞
21 19 20 syl φ +∞ ran F x X F x = +∞
22 21 adantr φ +∞ ran F +∞ ran F x X F x = +∞
23 18 22 mpbid φ +∞ ran F x X F x = +∞
24 iccssxr 0 +∞ *
25 3 ffvelrnda φ x X G x 0 +∞
26 24 25 sselid φ x X G x *
27 26 adantr φ x X F x = +∞ G x *
28 id F x = +∞ F x = +∞
29 28 eqcomd F x = +∞ +∞ = F x
30 29 adantl φ x X F x = +∞ +∞ = F x
31 4 adantr φ x X F x = +∞ F x G x
32 30 31 eqbrtrd φ x X F x = +∞ +∞ G x
33 27 32 xrgepnfd φ x X F x = +∞ G x = +∞
34 33 eqcomd φ x X F x = +∞ +∞ = G x
35 3 ffnd φ G Fn X
36 35 adantr φ x X G Fn X
37 simpr φ x X x X
38 fnfvelrn G Fn X x X G x ran G
39 36 37 38 syl2anc φ x X G x ran G
40 39 adantr φ x X F x = +∞ G x ran G
41 34 40 eqeltrd φ x X F x = +∞ +∞ ran G
42 41 ex φ x X F x = +∞ +∞ ran G
43 42 adantlr φ +∞ ran F x X F x = +∞ +∞ ran G
44 43 rexlimdva φ +∞ ran F x X F x = +∞ +∞ ran G
45 23 44 mpd φ +∞ ran F +∞ ran G
46 16 17 45 sge0pnfval φ +∞ ran F sum^ G = +∞
47 46 adantlr φ ¬ sum^ G = +∞ +∞ ran F sum^ G = +∞
48 simplr φ ¬ sum^ G = +∞ +∞ ran F ¬ sum^ G = +∞
49 47 48 pm2.65da φ ¬ sum^ G = +∞ ¬ +∞ ran F
50 15 49 fge0iccico φ ¬ sum^ G = +∞ F : X 0 +∞
51 50 adantr φ ¬ sum^ G = +∞ y 𝒫 X Fin F : X 0 +∞
52 elpwinss y 𝒫 X Fin y X
53 52 adantl φ ¬ sum^ G = +∞ y 𝒫 X Fin y X
54 51 53 fssresd φ ¬ sum^ G = +∞ y 𝒫 X Fin F y : y 0 +∞
55 14 54 sge0fsum φ ¬ sum^ G = +∞ y 𝒫 X Fin sum^ F y = x y F y x
56 rge0ssre 0 +∞
57 54 ffvelrnda φ ¬ sum^ G = +∞ y 𝒫 X Fin x y F y x 0 +∞
58 56 57 sselid φ ¬ sum^ G = +∞ y 𝒫 X Fin x y F y x
59 14 58 fsumrecl φ ¬ sum^ G = +∞ y 𝒫 X Fin x y F y x
60 55 59 eqeltrd φ ¬ sum^ G = +∞ y 𝒫 X Fin sum^ F y
61 3 adantr φ ¬ sum^ G = +∞ G : X 0 +∞
62 1 adantr φ ¬ sum^ G = +∞ X V
63 simpr φ ¬ sum^ G = +∞ ¬ sum^ G = +∞
64 62 61 sge0repnf φ ¬ sum^ G = +∞ sum^ G ¬ sum^ G = +∞
65 63 64 mpbird φ ¬ sum^ G = +∞ sum^ G
66 62 61 65 sge0rern φ ¬ sum^ G = +∞ ¬ +∞ ran G
67 61 66 fge0iccico φ ¬ sum^ G = +∞ G : X 0 +∞
68 67 adantr φ ¬ sum^ G = +∞ y 𝒫 X Fin G : X 0 +∞
69 68 53 fssresd φ ¬ sum^ G = +∞ y 𝒫 X Fin G y : y 0 +∞
70 14 69 sge0fsum φ ¬ sum^ G = +∞ y 𝒫 X Fin sum^ G y = x y G y x
71 69 ffvelrnda φ ¬ sum^ G = +∞ y 𝒫 X Fin x y G y x 0 +∞
72 56 71 sselid φ ¬ sum^ G = +∞ y 𝒫 X Fin x y G y x
73 14 72 fsumrecl φ ¬ sum^ G = +∞ y 𝒫 X Fin x y G y x
74 70 73 eqeltrd φ ¬ sum^ G = +∞ y 𝒫 X Fin sum^ G y
75 65 adantr φ ¬ sum^ G = +∞ y 𝒫 X Fin sum^ G
76 simplll φ ¬ sum^ G = +∞ y 𝒫 X Fin x y φ
77 53 sselda φ ¬ sum^ G = +∞ y 𝒫 X Fin x y x X
78 76 77 4 syl2anc φ ¬ sum^ G = +∞ y 𝒫 X Fin x y F x G x
79 fvres x y F y x = F x
80 79 adantl φ ¬ sum^ G = +∞ y 𝒫 X Fin x y F y x = F x
81 fvres x y G y x = G x
82 81 adantl φ ¬ sum^ G = +∞ y 𝒫 X Fin x y G y x = G x
83 80 82 breq12d φ ¬ sum^ G = +∞ y 𝒫 X Fin x y F y x G y x F x G x
84 78 83 mpbird φ ¬ sum^ G = +∞ y 𝒫 X Fin x y F y x G y x
85 14 58 72 84 fsumle φ ¬ sum^ G = +∞ y 𝒫 X Fin x y F y x x y G y x
86 55 70 breq12d φ ¬ sum^ G = +∞ y 𝒫 X Fin sum^ F y sum^ G y x y F y x x y G y x
87 85 86 mpbird φ ¬ sum^ G = +∞ y 𝒫 X Fin sum^ F y sum^ G y
88 1 adantr φ y 𝒫 X Fin X V
89 3 adantr φ y 𝒫 X Fin G : X 0 +∞
90 88 89 sge0less φ y 𝒫 X Fin sum^ G y sum^ G
91 90 adantlr φ ¬ sum^ G = +∞ y 𝒫 X Fin sum^ G y sum^ G
92 60 74 75 87 91 letrd φ ¬ sum^ G = +∞ y 𝒫 X Fin sum^ F y sum^ G
93 92 ralrimiva φ ¬ sum^ G = +∞ y 𝒫 X Fin sum^ F y sum^ G
94 62 61 sge0xrcl φ ¬ sum^ G = +∞ sum^ G *
95 62 15 94 sge0lefi φ ¬ sum^ G = +∞ sum^ F sum^ G y 𝒫 X Fin sum^ F y sum^ G
96 93 95 mpbird φ ¬ sum^ G = +∞ sum^ F sum^ G
97 12 96 pm2.61dan φ sum^ F sum^ G