Step |
Hyp |
Ref |
Expression |
1 |
|
sge0le.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
2 |
|
sge0le.F |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) ) |
3 |
|
sge0le.g |
⊢ ( 𝜑 → 𝐺 : 𝑋 ⟶ ( 0 [,] +∞ ) ) |
4 |
|
sge0le.le |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐺 ‘ 𝑥 ) ) |
5 |
1 2
|
sge0xrcl |
⊢ ( 𝜑 → ( Σ^ ‘ 𝐹 ) ∈ ℝ* ) |
6 |
|
pnfge |
⊢ ( ( Σ^ ‘ 𝐹 ) ∈ ℝ* → ( Σ^ ‘ 𝐹 ) ≤ +∞ ) |
7 |
5 6
|
syl |
⊢ ( 𝜑 → ( Σ^ ‘ 𝐹 ) ≤ +∞ ) |
8 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( Σ^ ‘ 𝐺 ) = +∞ ) → ( Σ^ ‘ 𝐹 ) ≤ +∞ ) |
9 |
|
id |
⊢ ( ( Σ^ ‘ 𝐺 ) = +∞ → ( Σ^ ‘ 𝐺 ) = +∞ ) |
10 |
9
|
eqcomd |
⊢ ( ( Σ^ ‘ 𝐺 ) = +∞ → +∞ = ( Σ^ ‘ 𝐺 ) ) |
11 |
10
|
adantl |
⊢ ( ( 𝜑 ∧ ( Σ^ ‘ 𝐺 ) = +∞ ) → +∞ = ( Σ^ ‘ 𝐺 ) ) |
12 |
8 11
|
breqtrd |
⊢ ( ( 𝜑 ∧ ( Σ^ ‘ 𝐺 ) = +∞ ) → ( Σ^ ‘ 𝐹 ) ≤ ( Σ^ ‘ 𝐺 ) ) |
13 |
|
elinel2 |
⊢ ( 𝑦 ∈ ( 𝒫 𝑋 ∩ Fin ) → 𝑦 ∈ Fin ) |
14 |
13
|
adantl |
⊢ ( ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐺 ) = +∞ ) ∧ 𝑦 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → 𝑦 ∈ Fin ) |
15 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐺 ) = +∞ ) → 𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) ) |
16 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ +∞ ∈ ran 𝐹 ) → 𝑋 ∈ 𝑉 ) |
17 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ +∞ ∈ ran 𝐹 ) → 𝐺 : 𝑋 ⟶ ( 0 [,] +∞ ) ) |
18 |
|
simpr |
⊢ ( ( 𝜑 ∧ +∞ ∈ ran 𝐹 ) → +∞ ∈ ran 𝐹 ) |
19 |
2
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn 𝑋 ) |
20 |
|
fvelrnb |
⊢ ( 𝐹 Fn 𝑋 → ( +∞ ∈ ran 𝐹 ↔ ∃ 𝑥 ∈ 𝑋 ( 𝐹 ‘ 𝑥 ) = +∞ ) ) |
21 |
19 20
|
syl |
⊢ ( 𝜑 → ( +∞ ∈ ran 𝐹 ↔ ∃ 𝑥 ∈ 𝑋 ( 𝐹 ‘ 𝑥 ) = +∞ ) ) |
22 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ +∞ ∈ ran 𝐹 ) → ( +∞ ∈ ran 𝐹 ↔ ∃ 𝑥 ∈ 𝑋 ( 𝐹 ‘ 𝑥 ) = +∞ ) ) |
23 |
18 22
|
mpbid |
⊢ ( ( 𝜑 ∧ +∞ ∈ ran 𝐹 ) → ∃ 𝑥 ∈ 𝑋 ( 𝐹 ‘ 𝑥 ) = +∞ ) |
24 |
|
iccssxr |
⊢ ( 0 [,] +∞ ) ⊆ ℝ* |
25 |
3
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐺 ‘ 𝑥 ) ∈ ( 0 [,] +∞ ) ) |
26 |
24 25
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐺 ‘ 𝑥 ) ∈ ℝ* ) |
27 |
26
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = +∞ ) → ( 𝐺 ‘ 𝑥 ) ∈ ℝ* ) |
28 |
|
id |
⊢ ( ( 𝐹 ‘ 𝑥 ) = +∞ → ( 𝐹 ‘ 𝑥 ) = +∞ ) |
29 |
28
|
eqcomd |
⊢ ( ( 𝐹 ‘ 𝑥 ) = +∞ → +∞ = ( 𝐹 ‘ 𝑥 ) ) |
30 |
29
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = +∞ ) → +∞ = ( 𝐹 ‘ 𝑥 ) ) |
31 |
4
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = +∞ ) → ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐺 ‘ 𝑥 ) ) |
32 |
30 31
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = +∞ ) → +∞ ≤ ( 𝐺 ‘ 𝑥 ) ) |
33 |
27 32
|
xrgepnfd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = +∞ ) → ( 𝐺 ‘ 𝑥 ) = +∞ ) |
34 |
33
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = +∞ ) → +∞ = ( 𝐺 ‘ 𝑥 ) ) |
35 |
3
|
ffnd |
⊢ ( 𝜑 → 𝐺 Fn 𝑋 ) |
36 |
35
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐺 Fn 𝑋 ) |
37 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ 𝑋 ) |
38 |
|
fnfvelrn |
⊢ ( ( 𝐺 Fn 𝑋 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐺 ‘ 𝑥 ) ∈ ran 𝐺 ) |
39 |
36 37 38
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐺 ‘ 𝑥 ) ∈ ran 𝐺 ) |
40 |
39
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = +∞ ) → ( 𝐺 ‘ 𝑥 ) ∈ ran 𝐺 ) |
41 |
34 40
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = +∞ ) → +∞ ∈ ran 𝐺 ) |
42 |
41
|
ex |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑥 ) = +∞ → +∞ ∈ ran 𝐺 ) ) |
43 |
42
|
adantlr |
⊢ ( ( ( 𝜑 ∧ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑥 ) = +∞ → +∞ ∈ ran 𝐺 ) ) |
44 |
43
|
rexlimdva |
⊢ ( ( 𝜑 ∧ +∞ ∈ ran 𝐹 ) → ( ∃ 𝑥 ∈ 𝑋 ( 𝐹 ‘ 𝑥 ) = +∞ → +∞ ∈ ran 𝐺 ) ) |
45 |
23 44
|
mpd |
⊢ ( ( 𝜑 ∧ +∞ ∈ ran 𝐹 ) → +∞ ∈ ran 𝐺 ) |
46 |
16 17 45
|
sge0pnfval |
⊢ ( ( 𝜑 ∧ +∞ ∈ ran 𝐹 ) → ( Σ^ ‘ 𝐺 ) = +∞ ) |
47 |
46
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐺 ) = +∞ ) ∧ +∞ ∈ ran 𝐹 ) → ( Σ^ ‘ 𝐺 ) = +∞ ) |
48 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐺 ) = +∞ ) ∧ +∞ ∈ ran 𝐹 ) → ¬ ( Σ^ ‘ 𝐺 ) = +∞ ) |
49 |
47 48
|
pm2.65da |
⊢ ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐺 ) = +∞ ) → ¬ +∞ ∈ ran 𝐹 ) |
50 |
15 49
|
fge0iccico |
⊢ ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐺 ) = +∞ ) → 𝐹 : 𝑋 ⟶ ( 0 [,) +∞ ) ) |
51 |
50
|
adantr |
⊢ ( ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐺 ) = +∞ ) ∧ 𝑦 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → 𝐹 : 𝑋 ⟶ ( 0 [,) +∞ ) ) |
52 |
|
elpwinss |
⊢ ( 𝑦 ∈ ( 𝒫 𝑋 ∩ Fin ) → 𝑦 ⊆ 𝑋 ) |
53 |
52
|
adantl |
⊢ ( ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐺 ) = +∞ ) ∧ 𝑦 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → 𝑦 ⊆ 𝑋 ) |
54 |
51 53
|
fssresd |
⊢ ( ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐺 ) = +∞ ) ∧ 𝑦 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ ( 0 [,) +∞ ) ) |
55 |
14 54
|
sge0fsum |
⊢ ( ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐺 ) = +∞ ) ∧ 𝑦 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( Σ^ ‘ ( 𝐹 ↾ 𝑦 ) ) = Σ 𝑥 ∈ 𝑦 ( ( 𝐹 ↾ 𝑦 ) ‘ 𝑥 ) ) |
56 |
|
rge0ssre |
⊢ ( 0 [,) +∞ ) ⊆ ℝ |
57 |
54
|
ffvelrnda |
⊢ ( ( ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐺 ) = +∞ ) ∧ 𝑦 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑥 ∈ 𝑦 ) → ( ( 𝐹 ↾ 𝑦 ) ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ) |
58 |
56 57
|
sselid |
⊢ ( ( ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐺 ) = +∞ ) ∧ 𝑦 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑥 ∈ 𝑦 ) → ( ( 𝐹 ↾ 𝑦 ) ‘ 𝑥 ) ∈ ℝ ) |
59 |
14 58
|
fsumrecl |
⊢ ( ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐺 ) = +∞ ) ∧ 𝑦 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → Σ 𝑥 ∈ 𝑦 ( ( 𝐹 ↾ 𝑦 ) ‘ 𝑥 ) ∈ ℝ ) |
60 |
55 59
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐺 ) = +∞ ) ∧ 𝑦 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( Σ^ ‘ ( 𝐹 ↾ 𝑦 ) ) ∈ ℝ ) |
61 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐺 ) = +∞ ) → 𝐺 : 𝑋 ⟶ ( 0 [,] +∞ ) ) |
62 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐺 ) = +∞ ) → 𝑋 ∈ 𝑉 ) |
63 |
|
simpr |
⊢ ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐺 ) = +∞ ) → ¬ ( Σ^ ‘ 𝐺 ) = +∞ ) |
64 |
62 61
|
sge0repnf |
⊢ ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐺 ) = +∞ ) → ( ( Σ^ ‘ 𝐺 ) ∈ ℝ ↔ ¬ ( Σ^ ‘ 𝐺 ) = +∞ ) ) |
65 |
63 64
|
mpbird |
⊢ ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐺 ) = +∞ ) → ( Σ^ ‘ 𝐺 ) ∈ ℝ ) |
66 |
62 61 65
|
sge0rern |
⊢ ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐺 ) = +∞ ) → ¬ +∞ ∈ ran 𝐺 ) |
67 |
61 66
|
fge0iccico |
⊢ ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐺 ) = +∞ ) → 𝐺 : 𝑋 ⟶ ( 0 [,) +∞ ) ) |
68 |
67
|
adantr |
⊢ ( ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐺 ) = +∞ ) ∧ 𝑦 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → 𝐺 : 𝑋 ⟶ ( 0 [,) +∞ ) ) |
69 |
68 53
|
fssresd |
⊢ ( ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐺 ) = +∞ ) ∧ 𝑦 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( 𝐺 ↾ 𝑦 ) : 𝑦 ⟶ ( 0 [,) +∞ ) ) |
70 |
14 69
|
sge0fsum |
⊢ ( ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐺 ) = +∞ ) ∧ 𝑦 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( Σ^ ‘ ( 𝐺 ↾ 𝑦 ) ) = Σ 𝑥 ∈ 𝑦 ( ( 𝐺 ↾ 𝑦 ) ‘ 𝑥 ) ) |
71 |
69
|
ffvelrnda |
⊢ ( ( ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐺 ) = +∞ ) ∧ 𝑦 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑥 ∈ 𝑦 ) → ( ( 𝐺 ↾ 𝑦 ) ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ) |
72 |
56 71
|
sselid |
⊢ ( ( ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐺 ) = +∞ ) ∧ 𝑦 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑥 ∈ 𝑦 ) → ( ( 𝐺 ↾ 𝑦 ) ‘ 𝑥 ) ∈ ℝ ) |
73 |
14 72
|
fsumrecl |
⊢ ( ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐺 ) = +∞ ) ∧ 𝑦 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → Σ 𝑥 ∈ 𝑦 ( ( 𝐺 ↾ 𝑦 ) ‘ 𝑥 ) ∈ ℝ ) |
74 |
70 73
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐺 ) = +∞ ) ∧ 𝑦 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( Σ^ ‘ ( 𝐺 ↾ 𝑦 ) ) ∈ ℝ ) |
75 |
65
|
adantr |
⊢ ( ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐺 ) = +∞ ) ∧ 𝑦 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( Σ^ ‘ 𝐺 ) ∈ ℝ ) |
76 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐺 ) = +∞ ) ∧ 𝑦 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑥 ∈ 𝑦 ) → 𝜑 ) |
77 |
53
|
sselda |
⊢ ( ( ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐺 ) = +∞ ) ∧ 𝑦 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑥 ∈ 𝑦 ) → 𝑥 ∈ 𝑋 ) |
78 |
76 77 4
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐺 ) = +∞ ) ∧ 𝑦 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑥 ∈ 𝑦 ) → ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐺 ‘ 𝑥 ) ) |
79 |
|
fvres |
⊢ ( 𝑥 ∈ 𝑦 → ( ( 𝐹 ↾ 𝑦 ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
80 |
79
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐺 ) = +∞ ) ∧ 𝑦 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑥 ∈ 𝑦 ) → ( ( 𝐹 ↾ 𝑦 ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
81 |
|
fvres |
⊢ ( 𝑥 ∈ 𝑦 → ( ( 𝐺 ↾ 𝑦 ) ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) |
82 |
81
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐺 ) = +∞ ) ∧ 𝑦 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑥 ∈ 𝑦 ) → ( ( 𝐺 ↾ 𝑦 ) ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) |
83 |
80 82
|
breq12d |
⊢ ( ( ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐺 ) = +∞ ) ∧ 𝑦 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑥 ∈ 𝑦 ) → ( ( ( 𝐹 ↾ 𝑦 ) ‘ 𝑥 ) ≤ ( ( 𝐺 ↾ 𝑦 ) ‘ 𝑥 ) ↔ ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) |
84 |
78 83
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐺 ) = +∞ ) ∧ 𝑦 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑥 ∈ 𝑦 ) → ( ( 𝐹 ↾ 𝑦 ) ‘ 𝑥 ) ≤ ( ( 𝐺 ↾ 𝑦 ) ‘ 𝑥 ) ) |
85 |
14 58 72 84
|
fsumle |
⊢ ( ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐺 ) = +∞ ) ∧ 𝑦 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → Σ 𝑥 ∈ 𝑦 ( ( 𝐹 ↾ 𝑦 ) ‘ 𝑥 ) ≤ Σ 𝑥 ∈ 𝑦 ( ( 𝐺 ↾ 𝑦 ) ‘ 𝑥 ) ) |
86 |
55 70
|
breq12d |
⊢ ( ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐺 ) = +∞ ) ∧ 𝑦 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( ( Σ^ ‘ ( 𝐹 ↾ 𝑦 ) ) ≤ ( Σ^ ‘ ( 𝐺 ↾ 𝑦 ) ) ↔ Σ 𝑥 ∈ 𝑦 ( ( 𝐹 ↾ 𝑦 ) ‘ 𝑥 ) ≤ Σ 𝑥 ∈ 𝑦 ( ( 𝐺 ↾ 𝑦 ) ‘ 𝑥 ) ) ) |
87 |
85 86
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐺 ) = +∞ ) ∧ 𝑦 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( Σ^ ‘ ( 𝐹 ↾ 𝑦 ) ) ≤ ( Σ^ ‘ ( 𝐺 ↾ 𝑦 ) ) ) |
88 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → 𝑋 ∈ 𝑉 ) |
89 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → 𝐺 : 𝑋 ⟶ ( 0 [,] +∞ ) ) |
90 |
88 89
|
sge0less |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( Σ^ ‘ ( 𝐺 ↾ 𝑦 ) ) ≤ ( Σ^ ‘ 𝐺 ) ) |
91 |
90
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐺 ) = +∞ ) ∧ 𝑦 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( Σ^ ‘ ( 𝐺 ↾ 𝑦 ) ) ≤ ( Σ^ ‘ 𝐺 ) ) |
92 |
60 74 75 87 91
|
letrd |
⊢ ( ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐺 ) = +∞ ) ∧ 𝑦 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( Σ^ ‘ ( 𝐹 ↾ 𝑦 ) ) ≤ ( Σ^ ‘ 𝐺 ) ) |
93 |
92
|
ralrimiva |
⊢ ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐺 ) = +∞ ) → ∀ 𝑦 ∈ ( 𝒫 𝑋 ∩ Fin ) ( Σ^ ‘ ( 𝐹 ↾ 𝑦 ) ) ≤ ( Σ^ ‘ 𝐺 ) ) |
94 |
62 61
|
sge0xrcl |
⊢ ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐺 ) = +∞ ) → ( Σ^ ‘ 𝐺 ) ∈ ℝ* ) |
95 |
62 15 94
|
sge0lefi |
⊢ ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐺 ) = +∞ ) → ( ( Σ^ ‘ 𝐹 ) ≤ ( Σ^ ‘ 𝐺 ) ↔ ∀ 𝑦 ∈ ( 𝒫 𝑋 ∩ Fin ) ( Σ^ ‘ ( 𝐹 ↾ 𝑦 ) ) ≤ ( Σ^ ‘ 𝐺 ) ) ) |
96 |
93 95
|
mpbird |
⊢ ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐺 ) = +∞ ) → ( Σ^ ‘ 𝐹 ) ≤ ( Σ^ ‘ 𝐺 ) ) |
97 |
12 96
|
pm2.61dan |
⊢ ( 𝜑 → ( Σ^ ‘ 𝐹 ) ≤ ( Σ^ ‘ 𝐺 ) ) |