| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sge0le.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 2 |
|
sge0le.F |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) ) |
| 3 |
|
sge0le.g |
⊢ ( 𝜑 → 𝐺 : 𝑋 ⟶ ( 0 [,] +∞ ) ) |
| 4 |
|
sge0le.le |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐺 ‘ 𝑥 ) ) |
| 5 |
1 2
|
sge0xrcl |
⊢ ( 𝜑 → ( Σ^ ‘ 𝐹 ) ∈ ℝ* ) |
| 6 |
|
pnfge |
⊢ ( ( Σ^ ‘ 𝐹 ) ∈ ℝ* → ( Σ^ ‘ 𝐹 ) ≤ +∞ ) |
| 7 |
5 6
|
syl |
⊢ ( 𝜑 → ( Σ^ ‘ 𝐹 ) ≤ +∞ ) |
| 8 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( Σ^ ‘ 𝐺 ) = +∞ ) → ( Σ^ ‘ 𝐹 ) ≤ +∞ ) |
| 9 |
|
id |
⊢ ( ( Σ^ ‘ 𝐺 ) = +∞ → ( Σ^ ‘ 𝐺 ) = +∞ ) |
| 10 |
9
|
eqcomd |
⊢ ( ( Σ^ ‘ 𝐺 ) = +∞ → +∞ = ( Σ^ ‘ 𝐺 ) ) |
| 11 |
10
|
adantl |
⊢ ( ( 𝜑 ∧ ( Σ^ ‘ 𝐺 ) = +∞ ) → +∞ = ( Σ^ ‘ 𝐺 ) ) |
| 12 |
8 11
|
breqtrd |
⊢ ( ( 𝜑 ∧ ( Σ^ ‘ 𝐺 ) = +∞ ) → ( Σ^ ‘ 𝐹 ) ≤ ( Σ^ ‘ 𝐺 ) ) |
| 13 |
|
elinel2 |
⊢ ( 𝑦 ∈ ( 𝒫 𝑋 ∩ Fin ) → 𝑦 ∈ Fin ) |
| 14 |
13
|
adantl |
⊢ ( ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐺 ) = +∞ ) ∧ 𝑦 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → 𝑦 ∈ Fin ) |
| 15 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐺 ) = +∞ ) → 𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) ) |
| 16 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ +∞ ∈ ran 𝐹 ) → 𝑋 ∈ 𝑉 ) |
| 17 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ +∞ ∈ ran 𝐹 ) → 𝐺 : 𝑋 ⟶ ( 0 [,] +∞ ) ) |
| 18 |
|
simpr |
⊢ ( ( 𝜑 ∧ +∞ ∈ ran 𝐹 ) → +∞ ∈ ran 𝐹 ) |
| 19 |
2
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn 𝑋 ) |
| 20 |
|
fvelrnb |
⊢ ( 𝐹 Fn 𝑋 → ( +∞ ∈ ran 𝐹 ↔ ∃ 𝑥 ∈ 𝑋 ( 𝐹 ‘ 𝑥 ) = +∞ ) ) |
| 21 |
19 20
|
syl |
⊢ ( 𝜑 → ( +∞ ∈ ran 𝐹 ↔ ∃ 𝑥 ∈ 𝑋 ( 𝐹 ‘ 𝑥 ) = +∞ ) ) |
| 22 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ +∞ ∈ ran 𝐹 ) → ( +∞ ∈ ran 𝐹 ↔ ∃ 𝑥 ∈ 𝑋 ( 𝐹 ‘ 𝑥 ) = +∞ ) ) |
| 23 |
18 22
|
mpbid |
⊢ ( ( 𝜑 ∧ +∞ ∈ ran 𝐹 ) → ∃ 𝑥 ∈ 𝑋 ( 𝐹 ‘ 𝑥 ) = +∞ ) |
| 24 |
|
iccssxr |
⊢ ( 0 [,] +∞ ) ⊆ ℝ* |
| 25 |
3
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐺 ‘ 𝑥 ) ∈ ( 0 [,] +∞ ) ) |
| 26 |
24 25
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐺 ‘ 𝑥 ) ∈ ℝ* ) |
| 27 |
26
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = +∞ ) → ( 𝐺 ‘ 𝑥 ) ∈ ℝ* ) |
| 28 |
|
id |
⊢ ( ( 𝐹 ‘ 𝑥 ) = +∞ → ( 𝐹 ‘ 𝑥 ) = +∞ ) |
| 29 |
28
|
eqcomd |
⊢ ( ( 𝐹 ‘ 𝑥 ) = +∞ → +∞ = ( 𝐹 ‘ 𝑥 ) ) |
| 30 |
29
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = +∞ ) → +∞ = ( 𝐹 ‘ 𝑥 ) ) |
| 31 |
4
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = +∞ ) → ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐺 ‘ 𝑥 ) ) |
| 32 |
30 31
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = +∞ ) → +∞ ≤ ( 𝐺 ‘ 𝑥 ) ) |
| 33 |
27 32
|
xrgepnfd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = +∞ ) → ( 𝐺 ‘ 𝑥 ) = +∞ ) |
| 34 |
33
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = +∞ ) → +∞ = ( 𝐺 ‘ 𝑥 ) ) |
| 35 |
3
|
ffnd |
⊢ ( 𝜑 → 𝐺 Fn 𝑋 ) |
| 36 |
35
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐺 Fn 𝑋 ) |
| 37 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ 𝑋 ) |
| 38 |
|
fnfvelrn |
⊢ ( ( 𝐺 Fn 𝑋 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐺 ‘ 𝑥 ) ∈ ran 𝐺 ) |
| 39 |
36 37 38
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐺 ‘ 𝑥 ) ∈ ran 𝐺 ) |
| 40 |
39
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = +∞ ) → ( 𝐺 ‘ 𝑥 ) ∈ ran 𝐺 ) |
| 41 |
34 40
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = +∞ ) → +∞ ∈ ran 𝐺 ) |
| 42 |
41
|
ex |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑥 ) = +∞ → +∞ ∈ ran 𝐺 ) ) |
| 43 |
42
|
adantlr |
⊢ ( ( ( 𝜑 ∧ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑥 ) = +∞ → +∞ ∈ ran 𝐺 ) ) |
| 44 |
43
|
rexlimdva |
⊢ ( ( 𝜑 ∧ +∞ ∈ ran 𝐹 ) → ( ∃ 𝑥 ∈ 𝑋 ( 𝐹 ‘ 𝑥 ) = +∞ → +∞ ∈ ran 𝐺 ) ) |
| 45 |
23 44
|
mpd |
⊢ ( ( 𝜑 ∧ +∞ ∈ ran 𝐹 ) → +∞ ∈ ran 𝐺 ) |
| 46 |
16 17 45
|
sge0pnfval |
⊢ ( ( 𝜑 ∧ +∞ ∈ ran 𝐹 ) → ( Σ^ ‘ 𝐺 ) = +∞ ) |
| 47 |
46
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐺 ) = +∞ ) ∧ +∞ ∈ ran 𝐹 ) → ( Σ^ ‘ 𝐺 ) = +∞ ) |
| 48 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐺 ) = +∞ ) ∧ +∞ ∈ ran 𝐹 ) → ¬ ( Σ^ ‘ 𝐺 ) = +∞ ) |
| 49 |
47 48
|
pm2.65da |
⊢ ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐺 ) = +∞ ) → ¬ +∞ ∈ ran 𝐹 ) |
| 50 |
15 49
|
fge0iccico |
⊢ ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐺 ) = +∞ ) → 𝐹 : 𝑋 ⟶ ( 0 [,) +∞ ) ) |
| 51 |
50
|
adantr |
⊢ ( ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐺 ) = +∞ ) ∧ 𝑦 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → 𝐹 : 𝑋 ⟶ ( 0 [,) +∞ ) ) |
| 52 |
|
elpwinss |
⊢ ( 𝑦 ∈ ( 𝒫 𝑋 ∩ Fin ) → 𝑦 ⊆ 𝑋 ) |
| 53 |
52
|
adantl |
⊢ ( ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐺 ) = +∞ ) ∧ 𝑦 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → 𝑦 ⊆ 𝑋 ) |
| 54 |
51 53
|
fssresd |
⊢ ( ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐺 ) = +∞ ) ∧ 𝑦 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ ( 0 [,) +∞ ) ) |
| 55 |
14 54
|
sge0fsum |
⊢ ( ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐺 ) = +∞ ) ∧ 𝑦 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( Σ^ ‘ ( 𝐹 ↾ 𝑦 ) ) = Σ 𝑥 ∈ 𝑦 ( ( 𝐹 ↾ 𝑦 ) ‘ 𝑥 ) ) |
| 56 |
|
rge0ssre |
⊢ ( 0 [,) +∞ ) ⊆ ℝ |
| 57 |
54
|
ffvelcdmda |
⊢ ( ( ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐺 ) = +∞ ) ∧ 𝑦 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑥 ∈ 𝑦 ) → ( ( 𝐹 ↾ 𝑦 ) ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ) |
| 58 |
56 57
|
sselid |
⊢ ( ( ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐺 ) = +∞ ) ∧ 𝑦 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑥 ∈ 𝑦 ) → ( ( 𝐹 ↾ 𝑦 ) ‘ 𝑥 ) ∈ ℝ ) |
| 59 |
14 58
|
fsumrecl |
⊢ ( ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐺 ) = +∞ ) ∧ 𝑦 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → Σ 𝑥 ∈ 𝑦 ( ( 𝐹 ↾ 𝑦 ) ‘ 𝑥 ) ∈ ℝ ) |
| 60 |
55 59
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐺 ) = +∞ ) ∧ 𝑦 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( Σ^ ‘ ( 𝐹 ↾ 𝑦 ) ) ∈ ℝ ) |
| 61 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐺 ) = +∞ ) → 𝐺 : 𝑋 ⟶ ( 0 [,] +∞ ) ) |
| 62 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐺 ) = +∞ ) → 𝑋 ∈ 𝑉 ) |
| 63 |
|
simpr |
⊢ ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐺 ) = +∞ ) → ¬ ( Σ^ ‘ 𝐺 ) = +∞ ) |
| 64 |
62 61
|
sge0repnf |
⊢ ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐺 ) = +∞ ) → ( ( Σ^ ‘ 𝐺 ) ∈ ℝ ↔ ¬ ( Σ^ ‘ 𝐺 ) = +∞ ) ) |
| 65 |
63 64
|
mpbird |
⊢ ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐺 ) = +∞ ) → ( Σ^ ‘ 𝐺 ) ∈ ℝ ) |
| 66 |
62 61 65
|
sge0rern |
⊢ ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐺 ) = +∞ ) → ¬ +∞ ∈ ran 𝐺 ) |
| 67 |
61 66
|
fge0iccico |
⊢ ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐺 ) = +∞ ) → 𝐺 : 𝑋 ⟶ ( 0 [,) +∞ ) ) |
| 68 |
67
|
adantr |
⊢ ( ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐺 ) = +∞ ) ∧ 𝑦 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → 𝐺 : 𝑋 ⟶ ( 0 [,) +∞ ) ) |
| 69 |
68 53
|
fssresd |
⊢ ( ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐺 ) = +∞ ) ∧ 𝑦 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( 𝐺 ↾ 𝑦 ) : 𝑦 ⟶ ( 0 [,) +∞ ) ) |
| 70 |
14 69
|
sge0fsum |
⊢ ( ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐺 ) = +∞ ) ∧ 𝑦 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( Σ^ ‘ ( 𝐺 ↾ 𝑦 ) ) = Σ 𝑥 ∈ 𝑦 ( ( 𝐺 ↾ 𝑦 ) ‘ 𝑥 ) ) |
| 71 |
69
|
ffvelcdmda |
⊢ ( ( ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐺 ) = +∞ ) ∧ 𝑦 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑥 ∈ 𝑦 ) → ( ( 𝐺 ↾ 𝑦 ) ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ) |
| 72 |
56 71
|
sselid |
⊢ ( ( ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐺 ) = +∞ ) ∧ 𝑦 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑥 ∈ 𝑦 ) → ( ( 𝐺 ↾ 𝑦 ) ‘ 𝑥 ) ∈ ℝ ) |
| 73 |
14 72
|
fsumrecl |
⊢ ( ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐺 ) = +∞ ) ∧ 𝑦 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → Σ 𝑥 ∈ 𝑦 ( ( 𝐺 ↾ 𝑦 ) ‘ 𝑥 ) ∈ ℝ ) |
| 74 |
70 73
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐺 ) = +∞ ) ∧ 𝑦 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( Σ^ ‘ ( 𝐺 ↾ 𝑦 ) ) ∈ ℝ ) |
| 75 |
65
|
adantr |
⊢ ( ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐺 ) = +∞ ) ∧ 𝑦 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( Σ^ ‘ 𝐺 ) ∈ ℝ ) |
| 76 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐺 ) = +∞ ) ∧ 𝑦 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑥 ∈ 𝑦 ) → 𝜑 ) |
| 77 |
53
|
sselda |
⊢ ( ( ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐺 ) = +∞ ) ∧ 𝑦 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑥 ∈ 𝑦 ) → 𝑥 ∈ 𝑋 ) |
| 78 |
76 77 4
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐺 ) = +∞ ) ∧ 𝑦 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑥 ∈ 𝑦 ) → ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐺 ‘ 𝑥 ) ) |
| 79 |
|
fvres |
⊢ ( 𝑥 ∈ 𝑦 → ( ( 𝐹 ↾ 𝑦 ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 80 |
79
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐺 ) = +∞ ) ∧ 𝑦 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑥 ∈ 𝑦 ) → ( ( 𝐹 ↾ 𝑦 ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 81 |
|
fvres |
⊢ ( 𝑥 ∈ 𝑦 → ( ( 𝐺 ↾ 𝑦 ) ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) |
| 82 |
81
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐺 ) = +∞ ) ∧ 𝑦 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑥 ∈ 𝑦 ) → ( ( 𝐺 ↾ 𝑦 ) ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) |
| 83 |
80 82
|
breq12d |
⊢ ( ( ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐺 ) = +∞ ) ∧ 𝑦 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑥 ∈ 𝑦 ) → ( ( ( 𝐹 ↾ 𝑦 ) ‘ 𝑥 ) ≤ ( ( 𝐺 ↾ 𝑦 ) ‘ 𝑥 ) ↔ ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) |
| 84 |
78 83
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐺 ) = +∞ ) ∧ 𝑦 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑥 ∈ 𝑦 ) → ( ( 𝐹 ↾ 𝑦 ) ‘ 𝑥 ) ≤ ( ( 𝐺 ↾ 𝑦 ) ‘ 𝑥 ) ) |
| 85 |
14 58 72 84
|
fsumle |
⊢ ( ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐺 ) = +∞ ) ∧ 𝑦 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → Σ 𝑥 ∈ 𝑦 ( ( 𝐹 ↾ 𝑦 ) ‘ 𝑥 ) ≤ Σ 𝑥 ∈ 𝑦 ( ( 𝐺 ↾ 𝑦 ) ‘ 𝑥 ) ) |
| 86 |
55 70
|
breq12d |
⊢ ( ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐺 ) = +∞ ) ∧ 𝑦 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( ( Σ^ ‘ ( 𝐹 ↾ 𝑦 ) ) ≤ ( Σ^ ‘ ( 𝐺 ↾ 𝑦 ) ) ↔ Σ 𝑥 ∈ 𝑦 ( ( 𝐹 ↾ 𝑦 ) ‘ 𝑥 ) ≤ Σ 𝑥 ∈ 𝑦 ( ( 𝐺 ↾ 𝑦 ) ‘ 𝑥 ) ) ) |
| 87 |
85 86
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐺 ) = +∞ ) ∧ 𝑦 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( Σ^ ‘ ( 𝐹 ↾ 𝑦 ) ) ≤ ( Σ^ ‘ ( 𝐺 ↾ 𝑦 ) ) ) |
| 88 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → 𝑋 ∈ 𝑉 ) |
| 89 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → 𝐺 : 𝑋 ⟶ ( 0 [,] +∞ ) ) |
| 90 |
88 89
|
sge0less |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( Σ^ ‘ ( 𝐺 ↾ 𝑦 ) ) ≤ ( Σ^ ‘ 𝐺 ) ) |
| 91 |
90
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐺 ) = +∞ ) ∧ 𝑦 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( Σ^ ‘ ( 𝐺 ↾ 𝑦 ) ) ≤ ( Σ^ ‘ 𝐺 ) ) |
| 92 |
60 74 75 87 91
|
letrd |
⊢ ( ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐺 ) = +∞ ) ∧ 𝑦 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( Σ^ ‘ ( 𝐹 ↾ 𝑦 ) ) ≤ ( Σ^ ‘ 𝐺 ) ) |
| 93 |
92
|
ralrimiva |
⊢ ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐺 ) = +∞ ) → ∀ 𝑦 ∈ ( 𝒫 𝑋 ∩ Fin ) ( Σ^ ‘ ( 𝐹 ↾ 𝑦 ) ) ≤ ( Σ^ ‘ 𝐺 ) ) |
| 94 |
62 61
|
sge0xrcl |
⊢ ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐺 ) = +∞ ) → ( Σ^ ‘ 𝐺 ) ∈ ℝ* ) |
| 95 |
62 15 94
|
sge0lefi |
⊢ ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐺 ) = +∞ ) → ( ( Σ^ ‘ 𝐹 ) ≤ ( Σ^ ‘ 𝐺 ) ↔ ∀ 𝑦 ∈ ( 𝒫 𝑋 ∩ Fin ) ( Σ^ ‘ ( 𝐹 ↾ 𝑦 ) ) ≤ ( Σ^ ‘ 𝐺 ) ) ) |
| 96 |
93 95
|
mpbird |
⊢ ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐺 ) = +∞ ) → ( Σ^ ‘ 𝐹 ) ≤ ( Σ^ ‘ 𝐺 ) ) |
| 97 |
12 96
|
pm2.61dan |
⊢ ( 𝜑 → ( Σ^ ‘ 𝐹 ) ≤ ( Σ^ ‘ 𝐺 ) ) |