| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sge0lefi.1 |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 2 |
|
sge0lefi.2 |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) ) |
| 3 |
|
sge0lefi.3 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
| 4 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) |
| 5 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → 𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) ) |
| 6 |
|
elpwinss |
⊢ ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) → 𝑥 ⊆ 𝑋 ) |
| 7 |
6
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → 𝑥 ⊆ 𝑋 ) |
| 8 |
5 7
|
fssresd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( 𝐹 ↾ 𝑥 ) : 𝑥 ⟶ ( 0 [,] +∞ ) ) |
| 9 |
4 8
|
sge0xrcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ∈ ℝ* ) |
| 10 |
9
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( Σ^ ‘ 𝐹 ) ≤ 𝐴 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ∈ ℝ* ) |
| 11 |
1 2
|
sge0xrcl |
⊢ ( 𝜑 → ( Σ^ ‘ 𝐹 ) ∈ ℝ* ) |
| 12 |
11
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( Σ^ ‘ 𝐹 ) ≤ 𝐴 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( Σ^ ‘ 𝐹 ) ∈ ℝ* ) |
| 13 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( Σ^ ‘ 𝐹 ) ≤ 𝐴 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → 𝐴 ∈ ℝ* ) |
| 14 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → 𝑋 ∈ 𝑉 ) |
| 15 |
14 5
|
sge0less |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ≤ ( Σ^ ‘ 𝐹 ) ) |
| 16 |
15
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( Σ^ ‘ 𝐹 ) ≤ 𝐴 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ≤ ( Σ^ ‘ 𝐹 ) ) |
| 17 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ ( Σ^ ‘ 𝐹 ) ≤ 𝐴 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( Σ^ ‘ 𝐹 ) ≤ 𝐴 ) |
| 18 |
10 12 13 16 17
|
xrletrd |
⊢ ( ( ( 𝜑 ∧ ( Σ^ ‘ 𝐹 ) ≤ 𝐴 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ≤ 𝐴 ) |
| 19 |
18
|
ralrimiva |
⊢ ( ( 𝜑 ∧ ( Σ^ ‘ 𝐹 ) ≤ 𝐴 ) → ∀ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ≤ 𝐴 ) |
| 20 |
19
|
ex |
⊢ ( 𝜑 → ( ( Σ^ ‘ 𝐹 ) ≤ 𝐴 → ∀ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ≤ 𝐴 ) ) |
| 21 |
1 2
|
sge0sup |
⊢ ( 𝜑 → ( Σ^ ‘ 𝐹 ) = sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ) , ℝ* , < ) ) |
| 22 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ≤ 𝐴 ) → ( Σ^ ‘ 𝐹 ) = sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ) , ℝ* , < ) ) |
| 23 |
|
vex |
⊢ 𝑦 ∈ V |
| 24 |
|
eqid |
⊢ ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ) = ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ) |
| 25 |
24
|
elrnmpt |
⊢ ( 𝑦 ∈ V → ( 𝑦 ∈ ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ) ↔ ∃ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) 𝑦 = ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ) ) |
| 26 |
23 25
|
ax-mp |
⊢ ( 𝑦 ∈ ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ) ↔ ∃ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) 𝑦 = ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ) |
| 27 |
26
|
biimpi |
⊢ ( 𝑦 ∈ ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ) → ∃ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) 𝑦 = ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ) |
| 28 |
27
|
adantl |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ≤ 𝐴 ) ∧ 𝑦 ∈ ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ) ) → ∃ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) 𝑦 = ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ) |
| 29 |
|
nfv |
⊢ Ⅎ 𝑥 𝜑 |
| 30 |
|
nfra1 |
⊢ Ⅎ 𝑥 ∀ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ≤ 𝐴 |
| 31 |
29 30
|
nfan |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ ∀ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ≤ 𝐴 ) |
| 32 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑦 |
| 33 |
|
nfmpt1 |
⊢ Ⅎ 𝑥 ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ) |
| 34 |
33
|
nfrn |
⊢ Ⅎ 𝑥 ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ) |
| 35 |
32 34
|
nfel |
⊢ Ⅎ 𝑥 𝑦 ∈ ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ) |
| 36 |
31 35
|
nfan |
⊢ Ⅎ 𝑥 ( ( 𝜑 ∧ ∀ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ≤ 𝐴 ) ∧ 𝑦 ∈ ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ) ) |
| 37 |
|
nfv |
⊢ Ⅎ 𝑥 𝑦 ≤ 𝐴 |
| 38 |
|
simp3 |
⊢ ( ( ∀ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ≤ 𝐴 ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ 𝑦 = ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ) → 𝑦 = ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ) |
| 39 |
|
rspa |
⊢ ( ( ∀ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ≤ 𝐴 ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ≤ 𝐴 ) |
| 40 |
39
|
3adant3 |
⊢ ( ( ∀ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ≤ 𝐴 ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ 𝑦 = ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ) → ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ≤ 𝐴 ) |
| 41 |
38 40
|
eqbrtrd |
⊢ ( ( ∀ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ≤ 𝐴 ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ 𝑦 = ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ) → 𝑦 ≤ 𝐴 ) |
| 42 |
41
|
3adant1l |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ≤ 𝐴 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ 𝑦 = ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ) → 𝑦 ≤ 𝐴 ) |
| 43 |
42
|
3exp |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ≤ 𝐴 ) → ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) → ( 𝑦 = ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) → 𝑦 ≤ 𝐴 ) ) ) |
| 44 |
43
|
adantr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ≤ 𝐴 ) ∧ 𝑦 ∈ ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ) ) → ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) → ( 𝑦 = ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) → 𝑦 ≤ 𝐴 ) ) ) |
| 45 |
36 37 44
|
rexlimd |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ≤ 𝐴 ) ∧ 𝑦 ∈ ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ) ) → ( ∃ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) 𝑦 = ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) → 𝑦 ≤ 𝐴 ) ) |
| 46 |
28 45
|
mpd |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ≤ 𝐴 ) ∧ 𝑦 ∈ ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ) ) → 𝑦 ≤ 𝐴 ) |
| 47 |
46
|
ralrimiva |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ≤ 𝐴 ) → ∀ 𝑦 ∈ ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ) 𝑦 ≤ 𝐴 ) |
| 48 |
9
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ∈ ℝ* ) |
| 49 |
24
|
rnmptss |
⊢ ( ∀ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ∈ ℝ* → ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ) ⊆ ℝ* ) |
| 50 |
48 49
|
syl |
⊢ ( 𝜑 → ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ) ⊆ ℝ* ) |
| 51 |
50
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ≤ 𝐴 ) → ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ) ⊆ ℝ* ) |
| 52 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ≤ 𝐴 ) → 𝐴 ∈ ℝ* ) |
| 53 |
|
supxrleub |
⊢ ( ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ) ⊆ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ) , ℝ* , < ) ≤ 𝐴 ↔ ∀ 𝑦 ∈ ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ) 𝑦 ≤ 𝐴 ) ) |
| 54 |
51 52 53
|
syl2anc |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ≤ 𝐴 ) → ( sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ) , ℝ* , < ) ≤ 𝐴 ↔ ∀ 𝑦 ∈ ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ) 𝑦 ≤ 𝐴 ) ) |
| 55 |
47 54
|
mpbird |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ≤ 𝐴 ) → sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ) , ℝ* , < ) ≤ 𝐴 ) |
| 56 |
22 55
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ≤ 𝐴 ) → ( Σ^ ‘ 𝐹 ) ≤ 𝐴 ) |
| 57 |
56
|
ex |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ≤ 𝐴 → ( Σ^ ‘ 𝐹 ) ≤ 𝐴 ) ) |
| 58 |
20 57
|
impbid |
⊢ ( 𝜑 → ( ( Σ^ ‘ 𝐹 ) ≤ 𝐴 ↔ ∀ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ≤ 𝐴 ) ) |