Step |
Hyp |
Ref |
Expression |
1 |
|
sge0ltfirpmpt.xph |
⊢ Ⅎ 𝑥 𝜑 |
2 |
|
sge0ltfirpmpt.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
3 |
|
sge0ltfirpmpt.b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ( 0 [,] +∞ ) ) |
4 |
|
sge0ltfirpmpt.rp |
⊢ ( 𝜑 → 𝑌 ∈ ℝ+ ) |
5 |
|
sge0ltfirpmpt.re |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ∈ ℝ ) |
6 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
7 |
1 3 6
|
fmptdf |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ( 0 [,] +∞ ) ) |
8 |
2 7 4 5
|
sge0ltfirp |
⊢ ( 𝜑 → ∃ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) < ( ( Σ^ ‘ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↾ 𝑦 ) ) + 𝑌 ) ) |
9 |
|
simpr |
⊢ ( ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) < ( ( Σ^ ‘ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↾ 𝑦 ) ) + 𝑌 ) ) → ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) < ( ( Σ^ ‘ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↾ 𝑦 ) ) + 𝑌 ) ) |
10 |
|
elpwinss |
⊢ ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) → 𝑦 ⊆ 𝐴 ) |
11 |
10
|
resmptd |
⊢ ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↾ 𝑦 ) = ( 𝑥 ∈ 𝑦 ↦ 𝐵 ) ) |
12 |
11
|
fveq2d |
⊢ ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) → ( Σ^ ‘ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↾ 𝑦 ) ) = ( Σ^ ‘ ( 𝑥 ∈ 𝑦 ↦ 𝐵 ) ) ) |
13 |
12
|
oveq1d |
⊢ ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) → ( ( Σ^ ‘ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↾ 𝑦 ) ) + 𝑌 ) = ( ( Σ^ ‘ ( 𝑥 ∈ 𝑦 ↦ 𝐵 ) ) + 𝑌 ) ) |
14 |
13
|
adantr |
⊢ ( ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) < ( ( Σ^ ‘ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↾ 𝑦 ) ) + 𝑌 ) ) → ( ( Σ^ ‘ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↾ 𝑦 ) ) + 𝑌 ) = ( ( Σ^ ‘ ( 𝑥 ∈ 𝑦 ↦ 𝐵 ) ) + 𝑌 ) ) |
15 |
9 14
|
breqtrd |
⊢ ( ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) < ( ( Σ^ ‘ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↾ 𝑦 ) ) + 𝑌 ) ) → ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) < ( ( Σ^ ‘ ( 𝑥 ∈ 𝑦 ↦ 𝐵 ) ) + 𝑌 ) ) |
16 |
15
|
ex |
⊢ ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) → ( ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) < ( ( Σ^ ‘ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↾ 𝑦 ) ) + 𝑌 ) → ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) < ( ( Σ^ ‘ ( 𝑥 ∈ 𝑦 ↦ 𝐵 ) ) + 𝑌 ) ) ) |
17 |
16
|
reximia |
⊢ ( ∃ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) < ( ( Σ^ ‘ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↾ 𝑦 ) ) + 𝑌 ) → ∃ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) < ( ( Σ^ ‘ ( 𝑥 ∈ 𝑦 ↦ 𝐵 ) ) + 𝑌 ) ) |
18 |
17
|
a1i |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) < ( ( Σ^ ‘ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↾ 𝑦 ) ) + 𝑌 ) → ∃ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) < ( ( Σ^ ‘ ( 𝑥 ∈ 𝑦 ↦ 𝐵 ) ) + 𝑌 ) ) ) |
19 |
8 18
|
mpd |
⊢ ( 𝜑 → ∃ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) < ( ( Σ^ ‘ ( 𝑥 ∈ 𝑦 ↦ 𝐵 ) ) + 𝑌 ) ) |