Metamath Proof Explorer


Theorem sge0ltfirpmpt

Description: If the extended sum of nonnegative reals is not +oo , then it can be approximated from below by finite subsums. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses sge0ltfirpmpt.xph 𝑥 𝜑
sge0ltfirpmpt.a ( 𝜑𝐴𝑉 )
sge0ltfirpmpt.b ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ( 0 [,] +∞ ) )
sge0ltfirpmpt.rp ( 𝜑𝑌 ∈ ℝ+ )
sge0ltfirpmpt.re ( 𝜑 → ( Σ^ ‘ ( 𝑥𝐴𝐵 ) ) ∈ ℝ )
Assertion sge0ltfirpmpt ( 𝜑 → ∃ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ( Σ^ ‘ ( 𝑥𝐴𝐵 ) ) < ( ( Σ^ ‘ ( 𝑥𝑦𝐵 ) ) + 𝑌 ) )

Proof

Step Hyp Ref Expression
1 sge0ltfirpmpt.xph 𝑥 𝜑
2 sge0ltfirpmpt.a ( 𝜑𝐴𝑉 )
3 sge0ltfirpmpt.b ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ( 0 [,] +∞ ) )
4 sge0ltfirpmpt.rp ( 𝜑𝑌 ∈ ℝ+ )
5 sge0ltfirpmpt.re ( 𝜑 → ( Σ^ ‘ ( 𝑥𝐴𝐵 ) ) ∈ ℝ )
6 eqid ( 𝑥𝐴𝐵 ) = ( 𝑥𝐴𝐵 )
7 1 3 6 fmptdf ( 𝜑 → ( 𝑥𝐴𝐵 ) : 𝐴 ⟶ ( 0 [,] +∞ ) )
8 2 7 4 5 sge0ltfirp ( 𝜑 → ∃ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ( Σ^ ‘ ( 𝑥𝐴𝐵 ) ) < ( ( Σ^ ‘ ( ( 𝑥𝐴𝐵 ) ↾ 𝑦 ) ) + 𝑌 ) )
9 simpr ( ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ ( Σ^ ‘ ( 𝑥𝐴𝐵 ) ) < ( ( Σ^ ‘ ( ( 𝑥𝐴𝐵 ) ↾ 𝑦 ) ) + 𝑌 ) ) → ( Σ^ ‘ ( 𝑥𝐴𝐵 ) ) < ( ( Σ^ ‘ ( ( 𝑥𝐴𝐵 ) ↾ 𝑦 ) ) + 𝑌 ) )
10 elpwinss ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) → 𝑦𝐴 )
11 10 resmptd ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) → ( ( 𝑥𝐴𝐵 ) ↾ 𝑦 ) = ( 𝑥𝑦𝐵 ) )
12 11 fveq2d ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) → ( Σ^ ‘ ( ( 𝑥𝐴𝐵 ) ↾ 𝑦 ) ) = ( Σ^ ‘ ( 𝑥𝑦𝐵 ) ) )
13 12 oveq1d ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) → ( ( Σ^ ‘ ( ( 𝑥𝐴𝐵 ) ↾ 𝑦 ) ) + 𝑌 ) = ( ( Σ^ ‘ ( 𝑥𝑦𝐵 ) ) + 𝑌 ) )
14 13 adantr ( ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ ( Σ^ ‘ ( 𝑥𝐴𝐵 ) ) < ( ( Σ^ ‘ ( ( 𝑥𝐴𝐵 ) ↾ 𝑦 ) ) + 𝑌 ) ) → ( ( Σ^ ‘ ( ( 𝑥𝐴𝐵 ) ↾ 𝑦 ) ) + 𝑌 ) = ( ( Σ^ ‘ ( 𝑥𝑦𝐵 ) ) + 𝑌 ) )
15 9 14 breqtrd ( ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ ( Σ^ ‘ ( 𝑥𝐴𝐵 ) ) < ( ( Σ^ ‘ ( ( 𝑥𝐴𝐵 ) ↾ 𝑦 ) ) + 𝑌 ) ) → ( Σ^ ‘ ( 𝑥𝐴𝐵 ) ) < ( ( Σ^ ‘ ( 𝑥𝑦𝐵 ) ) + 𝑌 ) )
16 15 ex ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) → ( ( Σ^ ‘ ( 𝑥𝐴𝐵 ) ) < ( ( Σ^ ‘ ( ( 𝑥𝐴𝐵 ) ↾ 𝑦 ) ) + 𝑌 ) → ( Σ^ ‘ ( 𝑥𝐴𝐵 ) ) < ( ( Σ^ ‘ ( 𝑥𝑦𝐵 ) ) + 𝑌 ) ) )
17 16 reximia ( ∃ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ( Σ^ ‘ ( 𝑥𝐴𝐵 ) ) < ( ( Σ^ ‘ ( ( 𝑥𝐴𝐵 ) ↾ 𝑦 ) ) + 𝑌 ) → ∃ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ( Σ^ ‘ ( 𝑥𝐴𝐵 ) ) < ( ( Σ^ ‘ ( 𝑥𝑦𝐵 ) ) + 𝑌 ) )
18 17 a1i ( 𝜑 → ( ∃ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ( Σ^ ‘ ( 𝑥𝐴𝐵 ) ) < ( ( Σ^ ‘ ( ( 𝑥𝐴𝐵 ) ↾ 𝑦 ) ) + 𝑌 ) → ∃ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ( Σ^ ‘ ( 𝑥𝐴𝐵 ) ) < ( ( Σ^ ‘ ( 𝑥𝑦𝐵 ) ) + 𝑌 ) ) )
19 8 18 mpd ( 𝜑 → ∃ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ( Σ^ ‘ ( 𝑥𝐴𝐵 ) ) < ( ( Σ^ ‘ ( 𝑥𝑦𝐵 ) ) + 𝑌 ) )