Step |
Hyp |
Ref |
Expression |
1 |
|
sge0le.x |
|- ( ph -> X e. V ) |
2 |
|
sge0le.F |
|- ( ph -> F : X --> ( 0 [,] +oo ) ) |
3 |
|
sge0le.g |
|- ( ph -> G : X --> ( 0 [,] +oo ) ) |
4 |
|
sge0le.le |
|- ( ( ph /\ x e. X ) -> ( F ` x ) <_ ( G ` x ) ) |
5 |
1 2
|
sge0xrcl |
|- ( ph -> ( sum^ ` F ) e. RR* ) |
6 |
|
pnfge |
|- ( ( sum^ ` F ) e. RR* -> ( sum^ ` F ) <_ +oo ) |
7 |
5 6
|
syl |
|- ( ph -> ( sum^ ` F ) <_ +oo ) |
8 |
7
|
adantr |
|- ( ( ph /\ ( sum^ ` G ) = +oo ) -> ( sum^ ` F ) <_ +oo ) |
9 |
|
id |
|- ( ( sum^ ` G ) = +oo -> ( sum^ ` G ) = +oo ) |
10 |
9
|
eqcomd |
|- ( ( sum^ ` G ) = +oo -> +oo = ( sum^ ` G ) ) |
11 |
10
|
adantl |
|- ( ( ph /\ ( sum^ ` G ) = +oo ) -> +oo = ( sum^ ` G ) ) |
12 |
8 11
|
breqtrd |
|- ( ( ph /\ ( sum^ ` G ) = +oo ) -> ( sum^ ` F ) <_ ( sum^ ` G ) ) |
13 |
|
elinel2 |
|- ( y e. ( ~P X i^i Fin ) -> y e. Fin ) |
14 |
13
|
adantl |
|- ( ( ( ph /\ -. ( sum^ ` G ) = +oo ) /\ y e. ( ~P X i^i Fin ) ) -> y e. Fin ) |
15 |
2
|
adantr |
|- ( ( ph /\ -. ( sum^ ` G ) = +oo ) -> F : X --> ( 0 [,] +oo ) ) |
16 |
1
|
adantr |
|- ( ( ph /\ +oo e. ran F ) -> X e. V ) |
17 |
3
|
adantr |
|- ( ( ph /\ +oo e. ran F ) -> G : X --> ( 0 [,] +oo ) ) |
18 |
|
simpr |
|- ( ( ph /\ +oo e. ran F ) -> +oo e. ran F ) |
19 |
2
|
ffnd |
|- ( ph -> F Fn X ) |
20 |
|
fvelrnb |
|- ( F Fn X -> ( +oo e. ran F <-> E. x e. X ( F ` x ) = +oo ) ) |
21 |
19 20
|
syl |
|- ( ph -> ( +oo e. ran F <-> E. x e. X ( F ` x ) = +oo ) ) |
22 |
21
|
adantr |
|- ( ( ph /\ +oo e. ran F ) -> ( +oo e. ran F <-> E. x e. X ( F ` x ) = +oo ) ) |
23 |
18 22
|
mpbid |
|- ( ( ph /\ +oo e. ran F ) -> E. x e. X ( F ` x ) = +oo ) |
24 |
|
iccssxr |
|- ( 0 [,] +oo ) C_ RR* |
25 |
3
|
ffvelrnda |
|- ( ( ph /\ x e. X ) -> ( G ` x ) e. ( 0 [,] +oo ) ) |
26 |
24 25
|
sselid |
|- ( ( ph /\ x e. X ) -> ( G ` x ) e. RR* ) |
27 |
26
|
adantr |
|- ( ( ( ph /\ x e. X ) /\ ( F ` x ) = +oo ) -> ( G ` x ) e. RR* ) |
28 |
|
id |
|- ( ( F ` x ) = +oo -> ( F ` x ) = +oo ) |
29 |
28
|
eqcomd |
|- ( ( F ` x ) = +oo -> +oo = ( F ` x ) ) |
30 |
29
|
adantl |
|- ( ( ( ph /\ x e. X ) /\ ( F ` x ) = +oo ) -> +oo = ( F ` x ) ) |
31 |
4
|
adantr |
|- ( ( ( ph /\ x e. X ) /\ ( F ` x ) = +oo ) -> ( F ` x ) <_ ( G ` x ) ) |
32 |
30 31
|
eqbrtrd |
|- ( ( ( ph /\ x e. X ) /\ ( F ` x ) = +oo ) -> +oo <_ ( G ` x ) ) |
33 |
27 32
|
xrgepnfd |
|- ( ( ( ph /\ x e. X ) /\ ( F ` x ) = +oo ) -> ( G ` x ) = +oo ) |
34 |
33
|
eqcomd |
|- ( ( ( ph /\ x e. X ) /\ ( F ` x ) = +oo ) -> +oo = ( G ` x ) ) |
35 |
3
|
ffnd |
|- ( ph -> G Fn X ) |
36 |
35
|
adantr |
|- ( ( ph /\ x e. X ) -> G Fn X ) |
37 |
|
simpr |
|- ( ( ph /\ x e. X ) -> x e. X ) |
38 |
|
fnfvelrn |
|- ( ( G Fn X /\ x e. X ) -> ( G ` x ) e. ran G ) |
39 |
36 37 38
|
syl2anc |
|- ( ( ph /\ x e. X ) -> ( G ` x ) e. ran G ) |
40 |
39
|
adantr |
|- ( ( ( ph /\ x e. X ) /\ ( F ` x ) = +oo ) -> ( G ` x ) e. ran G ) |
41 |
34 40
|
eqeltrd |
|- ( ( ( ph /\ x e. X ) /\ ( F ` x ) = +oo ) -> +oo e. ran G ) |
42 |
41
|
ex |
|- ( ( ph /\ x e. X ) -> ( ( F ` x ) = +oo -> +oo e. ran G ) ) |
43 |
42
|
adantlr |
|- ( ( ( ph /\ +oo e. ran F ) /\ x e. X ) -> ( ( F ` x ) = +oo -> +oo e. ran G ) ) |
44 |
43
|
rexlimdva |
|- ( ( ph /\ +oo e. ran F ) -> ( E. x e. X ( F ` x ) = +oo -> +oo e. ran G ) ) |
45 |
23 44
|
mpd |
|- ( ( ph /\ +oo e. ran F ) -> +oo e. ran G ) |
46 |
16 17 45
|
sge0pnfval |
|- ( ( ph /\ +oo e. ran F ) -> ( sum^ ` G ) = +oo ) |
47 |
46
|
adantlr |
|- ( ( ( ph /\ -. ( sum^ ` G ) = +oo ) /\ +oo e. ran F ) -> ( sum^ ` G ) = +oo ) |
48 |
|
simplr |
|- ( ( ( ph /\ -. ( sum^ ` G ) = +oo ) /\ +oo e. ran F ) -> -. ( sum^ ` G ) = +oo ) |
49 |
47 48
|
pm2.65da |
|- ( ( ph /\ -. ( sum^ ` G ) = +oo ) -> -. +oo e. ran F ) |
50 |
15 49
|
fge0iccico |
|- ( ( ph /\ -. ( sum^ ` G ) = +oo ) -> F : X --> ( 0 [,) +oo ) ) |
51 |
50
|
adantr |
|- ( ( ( ph /\ -. ( sum^ ` G ) = +oo ) /\ y e. ( ~P X i^i Fin ) ) -> F : X --> ( 0 [,) +oo ) ) |
52 |
|
elpwinss |
|- ( y e. ( ~P X i^i Fin ) -> y C_ X ) |
53 |
52
|
adantl |
|- ( ( ( ph /\ -. ( sum^ ` G ) = +oo ) /\ y e. ( ~P X i^i Fin ) ) -> y C_ X ) |
54 |
51 53
|
fssresd |
|- ( ( ( ph /\ -. ( sum^ ` G ) = +oo ) /\ y e. ( ~P X i^i Fin ) ) -> ( F |` y ) : y --> ( 0 [,) +oo ) ) |
55 |
14 54
|
sge0fsum |
|- ( ( ( ph /\ -. ( sum^ ` G ) = +oo ) /\ y e. ( ~P X i^i Fin ) ) -> ( sum^ ` ( F |` y ) ) = sum_ x e. y ( ( F |` y ) ` x ) ) |
56 |
|
rge0ssre |
|- ( 0 [,) +oo ) C_ RR |
57 |
54
|
ffvelrnda |
|- ( ( ( ( ph /\ -. ( sum^ ` G ) = +oo ) /\ y e. ( ~P X i^i Fin ) ) /\ x e. y ) -> ( ( F |` y ) ` x ) e. ( 0 [,) +oo ) ) |
58 |
56 57
|
sselid |
|- ( ( ( ( ph /\ -. ( sum^ ` G ) = +oo ) /\ y e. ( ~P X i^i Fin ) ) /\ x e. y ) -> ( ( F |` y ) ` x ) e. RR ) |
59 |
14 58
|
fsumrecl |
|- ( ( ( ph /\ -. ( sum^ ` G ) = +oo ) /\ y e. ( ~P X i^i Fin ) ) -> sum_ x e. y ( ( F |` y ) ` x ) e. RR ) |
60 |
55 59
|
eqeltrd |
|- ( ( ( ph /\ -. ( sum^ ` G ) = +oo ) /\ y e. ( ~P X i^i Fin ) ) -> ( sum^ ` ( F |` y ) ) e. RR ) |
61 |
3
|
adantr |
|- ( ( ph /\ -. ( sum^ ` G ) = +oo ) -> G : X --> ( 0 [,] +oo ) ) |
62 |
1
|
adantr |
|- ( ( ph /\ -. ( sum^ ` G ) = +oo ) -> X e. V ) |
63 |
|
simpr |
|- ( ( ph /\ -. ( sum^ ` G ) = +oo ) -> -. ( sum^ ` G ) = +oo ) |
64 |
62 61
|
sge0repnf |
|- ( ( ph /\ -. ( sum^ ` G ) = +oo ) -> ( ( sum^ ` G ) e. RR <-> -. ( sum^ ` G ) = +oo ) ) |
65 |
63 64
|
mpbird |
|- ( ( ph /\ -. ( sum^ ` G ) = +oo ) -> ( sum^ ` G ) e. RR ) |
66 |
62 61 65
|
sge0rern |
|- ( ( ph /\ -. ( sum^ ` G ) = +oo ) -> -. +oo e. ran G ) |
67 |
61 66
|
fge0iccico |
|- ( ( ph /\ -. ( sum^ ` G ) = +oo ) -> G : X --> ( 0 [,) +oo ) ) |
68 |
67
|
adantr |
|- ( ( ( ph /\ -. ( sum^ ` G ) = +oo ) /\ y e. ( ~P X i^i Fin ) ) -> G : X --> ( 0 [,) +oo ) ) |
69 |
68 53
|
fssresd |
|- ( ( ( ph /\ -. ( sum^ ` G ) = +oo ) /\ y e. ( ~P X i^i Fin ) ) -> ( G |` y ) : y --> ( 0 [,) +oo ) ) |
70 |
14 69
|
sge0fsum |
|- ( ( ( ph /\ -. ( sum^ ` G ) = +oo ) /\ y e. ( ~P X i^i Fin ) ) -> ( sum^ ` ( G |` y ) ) = sum_ x e. y ( ( G |` y ) ` x ) ) |
71 |
69
|
ffvelrnda |
|- ( ( ( ( ph /\ -. ( sum^ ` G ) = +oo ) /\ y e. ( ~P X i^i Fin ) ) /\ x e. y ) -> ( ( G |` y ) ` x ) e. ( 0 [,) +oo ) ) |
72 |
56 71
|
sselid |
|- ( ( ( ( ph /\ -. ( sum^ ` G ) = +oo ) /\ y e. ( ~P X i^i Fin ) ) /\ x e. y ) -> ( ( G |` y ) ` x ) e. RR ) |
73 |
14 72
|
fsumrecl |
|- ( ( ( ph /\ -. ( sum^ ` G ) = +oo ) /\ y e. ( ~P X i^i Fin ) ) -> sum_ x e. y ( ( G |` y ) ` x ) e. RR ) |
74 |
70 73
|
eqeltrd |
|- ( ( ( ph /\ -. ( sum^ ` G ) = +oo ) /\ y e. ( ~P X i^i Fin ) ) -> ( sum^ ` ( G |` y ) ) e. RR ) |
75 |
65
|
adantr |
|- ( ( ( ph /\ -. ( sum^ ` G ) = +oo ) /\ y e. ( ~P X i^i Fin ) ) -> ( sum^ ` G ) e. RR ) |
76 |
|
simplll |
|- ( ( ( ( ph /\ -. ( sum^ ` G ) = +oo ) /\ y e. ( ~P X i^i Fin ) ) /\ x e. y ) -> ph ) |
77 |
53
|
sselda |
|- ( ( ( ( ph /\ -. ( sum^ ` G ) = +oo ) /\ y e. ( ~P X i^i Fin ) ) /\ x e. y ) -> x e. X ) |
78 |
76 77 4
|
syl2anc |
|- ( ( ( ( ph /\ -. ( sum^ ` G ) = +oo ) /\ y e. ( ~P X i^i Fin ) ) /\ x e. y ) -> ( F ` x ) <_ ( G ` x ) ) |
79 |
|
fvres |
|- ( x e. y -> ( ( F |` y ) ` x ) = ( F ` x ) ) |
80 |
79
|
adantl |
|- ( ( ( ( ph /\ -. ( sum^ ` G ) = +oo ) /\ y e. ( ~P X i^i Fin ) ) /\ x e. y ) -> ( ( F |` y ) ` x ) = ( F ` x ) ) |
81 |
|
fvres |
|- ( x e. y -> ( ( G |` y ) ` x ) = ( G ` x ) ) |
82 |
81
|
adantl |
|- ( ( ( ( ph /\ -. ( sum^ ` G ) = +oo ) /\ y e. ( ~P X i^i Fin ) ) /\ x e. y ) -> ( ( G |` y ) ` x ) = ( G ` x ) ) |
83 |
80 82
|
breq12d |
|- ( ( ( ( ph /\ -. ( sum^ ` G ) = +oo ) /\ y e. ( ~P X i^i Fin ) ) /\ x e. y ) -> ( ( ( F |` y ) ` x ) <_ ( ( G |` y ) ` x ) <-> ( F ` x ) <_ ( G ` x ) ) ) |
84 |
78 83
|
mpbird |
|- ( ( ( ( ph /\ -. ( sum^ ` G ) = +oo ) /\ y e. ( ~P X i^i Fin ) ) /\ x e. y ) -> ( ( F |` y ) ` x ) <_ ( ( G |` y ) ` x ) ) |
85 |
14 58 72 84
|
fsumle |
|- ( ( ( ph /\ -. ( sum^ ` G ) = +oo ) /\ y e. ( ~P X i^i Fin ) ) -> sum_ x e. y ( ( F |` y ) ` x ) <_ sum_ x e. y ( ( G |` y ) ` x ) ) |
86 |
55 70
|
breq12d |
|- ( ( ( ph /\ -. ( sum^ ` G ) = +oo ) /\ y e. ( ~P X i^i Fin ) ) -> ( ( sum^ ` ( F |` y ) ) <_ ( sum^ ` ( G |` y ) ) <-> sum_ x e. y ( ( F |` y ) ` x ) <_ sum_ x e. y ( ( G |` y ) ` x ) ) ) |
87 |
85 86
|
mpbird |
|- ( ( ( ph /\ -. ( sum^ ` G ) = +oo ) /\ y e. ( ~P X i^i Fin ) ) -> ( sum^ ` ( F |` y ) ) <_ ( sum^ ` ( G |` y ) ) ) |
88 |
1
|
adantr |
|- ( ( ph /\ y e. ( ~P X i^i Fin ) ) -> X e. V ) |
89 |
3
|
adantr |
|- ( ( ph /\ y e. ( ~P X i^i Fin ) ) -> G : X --> ( 0 [,] +oo ) ) |
90 |
88 89
|
sge0less |
|- ( ( ph /\ y e. ( ~P X i^i Fin ) ) -> ( sum^ ` ( G |` y ) ) <_ ( sum^ ` G ) ) |
91 |
90
|
adantlr |
|- ( ( ( ph /\ -. ( sum^ ` G ) = +oo ) /\ y e. ( ~P X i^i Fin ) ) -> ( sum^ ` ( G |` y ) ) <_ ( sum^ ` G ) ) |
92 |
60 74 75 87 91
|
letrd |
|- ( ( ( ph /\ -. ( sum^ ` G ) = +oo ) /\ y e. ( ~P X i^i Fin ) ) -> ( sum^ ` ( F |` y ) ) <_ ( sum^ ` G ) ) |
93 |
92
|
ralrimiva |
|- ( ( ph /\ -. ( sum^ ` G ) = +oo ) -> A. y e. ( ~P X i^i Fin ) ( sum^ ` ( F |` y ) ) <_ ( sum^ ` G ) ) |
94 |
62 61
|
sge0xrcl |
|- ( ( ph /\ -. ( sum^ ` G ) = +oo ) -> ( sum^ ` G ) e. RR* ) |
95 |
62 15 94
|
sge0lefi |
|- ( ( ph /\ -. ( sum^ ` G ) = +oo ) -> ( ( sum^ ` F ) <_ ( sum^ ` G ) <-> A. y e. ( ~P X i^i Fin ) ( sum^ ` ( F |` y ) ) <_ ( sum^ ` G ) ) ) |
96 |
93 95
|
mpbird |
|- ( ( ph /\ -. ( sum^ ` G ) = +oo ) -> ( sum^ ` F ) <_ ( sum^ ` G ) ) |
97 |
12 96
|
pm2.61dan |
|- ( ph -> ( sum^ ` F ) <_ ( sum^ ` G ) ) |