| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sge0le.x |
|- ( ph -> X e. V ) |
| 2 |
|
sge0le.F |
|- ( ph -> F : X --> ( 0 [,] +oo ) ) |
| 3 |
|
sge0le.g |
|- ( ph -> G : X --> ( 0 [,] +oo ) ) |
| 4 |
|
sge0le.le |
|- ( ( ph /\ x e. X ) -> ( F ` x ) <_ ( G ` x ) ) |
| 5 |
1 2
|
sge0xrcl |
|- ( ph -> ( sum^ ` F ) e. RR* ) |
| 6 |
|
pnfge |
|- ( ( sum^ ` F ) e. RR* -> ( sum^ ` F ) <_ +oo ) |
| 7 |
5 6
|
syl |
|- ( ph -> ( sum^ ` F ) <_ +oo ) |
| 8 |
7
|
adantr |
|- ( ( ph /\ ( sum^ ` G ) = +oo ) -> ( sum^ ` F ) <_ +oo ) |
| 9 |
|
id |
|- ( ( sum^ ` G ) = +oo -> ( sum^ ` G ) = +oo ) |
| 10 |
9
|
eqcomd |
|- ( ( sum^ ` G ) = +oo -> +oo = ( sum^ ` G ) ) |
| 11 |
10
|
adantl |
|- ( ( ph /\ ( sum^ ` G ) = +oo ) -> +oo = ( sum^ ` G ) ) |
| 12 |
8 11
|
breqtrd |
|- ( ( ph /\ ( sum^ ` G ) = +oo ) -> ( sum^ ` F ) <_ ( sum^ ` G ) ) |
| 13 |
|
elinel2 |
|- ( y e. ( ~P X i^i Fin ) -> y e. Fin ) |
| 14 |
13
|
adantl |
|- ( ( ( ph /\ -. ( sum^ ` G ) = +oo ) /\ y e. ( ~P X i^i Fin ) ) -> y e. Fin ) |
| 15 |
2
|
adantr |
|- ( ( ph /\ -. ( sum^ ` G ) = +oo ) -> F : X --> ( 0 [,] +oo ) ) |
| 16 |
1
|
adantr |
|- ( ( ph /\ +oo e. ran F ) -> X e. V ) |
| 17 |
3
|
adantr |
|- ( ( ph /\ +oo e. ran F ) -> G : X --> ( 0 [,] +oo ) ) |
| 18 |
|
simpr |
|- ( ( ph /\ +oo e. ran F ) -> +oo e. ran F ) |
| 19 |
2
|
ffnd |
|- ( ph -> F Fn X ) |
| 20 |
|
fvelrnb |
|- ( F Fn X -> ( +oo e. ran F <-> E. x e. X ( F ` x ) = +oo ) ) |
| 21 |
19 20
|
syl |
|- ( ph -> ( +oo e. ran F <-> E. x e. X ( F ` x ) = +oo ) ) |
| 22 |
21
|
adantr |
|- ( ( ph /\ +oo e. ran F ) -> ( +oo e. ran F <-> E. x e. X ( F ` x ) = +oo ) ) |
| 23 |
18 22
|
mpbid |
|- ( ( ph /\ +oo e. ran F ) -> E. x e. X ( F ` x ) = +oo ) |
| 24 |
|
iccssxr |
|- ( 0 [,] +oo ) C_ RR* |
| 25 |
3
|
ffvelcdmda |
|- ( ( ph /\ x e. X ) -> ( G ` x ) e. ( 0 [,] +oo ) ) |
| 26 |
24 25
|
sselid |
|- ( ( ph /\ x e. X ) -> ( G ` x ) e. RR* ) |
| 27 |
26
|
adantr |
|- ( ( ( ph /\ x e. X ) /\ ( F ` x ) = +oo ) -> ( G ` x ) e. RR* ) |
| 28 |
|
id |
|- ( ( F ` x ) = +oo -> ( F ` x ) = +oo ) |
| 29 |
28
|
eqcomd |
|- ( ( F ` x ) = +oo -> +oo = ( F ` x ) ) |
| 30 |
29
|
adantl |
|- ( ( ( ph /\ x e. X ) /\ ( F ` x ) = +oo ) -> +oo = ( F ` x ) ) |
| 31 |
4
|
adantr |
|- ( ( ( ph /\ x e. X ) /\ ( F ` x ) = +oo ) -> ( F ` x ) <_ ( G ` x ) ) |
| 32 |
30 31
|
eqbrtrd |
|- ( ( ( ph /\ x e. X ) /\ ( F ` x ) = +oo ) -> +oo <_ ( G ` x ) ) |
| 33 |
27 32
|
xrgepnfd |
|- ( ( ( ph /\ x e. X ) /\ ( F ` x ) = +oo ) -> ( G ` x ) = +oo ) |
| 34 |
33
|
eqcomd |
|- ( ( ( ph /\ x e. X ) /\ ( F ` x ) = +oo ) -> +oo = ( G ` x ) ) |
| 35 |
3
|
ffnd |
|- ( ph -> G Fn X ) |
| 36 |
35
|
adantr |
|- ( ( ph /\ x e. X ) -> G Fn X ) |
| 37 |
|
simpr |
|- ( ( ph /\ x e. X ) -> x e. X ) |
| 38 |
|
fnfvelrn |
|- ( ( G Fn X /\ x e. X ) -> ( G ` x ) e. ran G ) |
| 39 |
36 37 38
|
syl2anc |
|- ( ( ph /\ x e. X ) -> ( G ` x ) e. ran G ) |
| 40 |
39
|
adantr |
|- ( ( ( ph /\ x e. X ) /\ ( F ` x ) = +oo ) -> ( G ` x ) e. ran G ) |
| 41 |
34 40
|
eqeltrd |
|- ( ( ( ph /\ x e. X ) /\ ( F ` x ) = +oo ) -> +oo e. ran G ) |
| 42 |
41
|
ex |
|- ( ( ph /\ x e. X ) -> ( ( F ` x ) = +oo -> +oo e. ran G ) ) |
| 43 |
42
|
adantlr |
|- ( ( ( ph /\ +oo e. ran F ) /\ x e. X ) -> ( ( F ` x ) = +oo -> +oo e. ran G ) ) |
| 44 |
43
|
rexlimdva |
|- ( ( ph /\ +oo e. ran F ) -> ( E. x e. X ( F ` x ) = +oo -> +oo e. ran G ) ) |
| 45 |
23 44
|
mpd |
|- ( ( ph /\ +oo e. ran F ) -> +oo e. ran G ) |
| 46 |
16 17 45
|
sge0pnfval |
|- ( ( ph /\ +oo e. ran F ) -> ( sum^ ` G ) = +oo ) |
| 47 |
46
|
adantlr |
|- ( ( ( ph /\ -. ( sum^ ` G ) = +oo ) /\ +oo e. ran F ) -> ( sum^ ` G ) = +oo ) |
| 48 |
|
simplr |
|- ( ( ( ph /\ -. ( sum^ ` G ) = +oo ) /\ +oo e. ran F ) -> -. ( sum^ ` G ) = +oo ) |
| 49 |
47 48
|
pm2.65da |
|- ( ( ph /\ -. ( sum^ ` G ) = +oo ) -> -. +oo e. ran F ) |
| 50 |
15 49
|
fge0iccico |
|- ( ( ph /\ -. ( sum^ ` G ) = +oo ) -> F : X --> ( 0 [,) +oo ) ) |
| 51 |
50
|
adantr |
|- ( ( ( ph /\ -. ( sum^ ` G ) = +oo ) /\ y e. ( ~P X i^i Fin ) ) -> F : X --> ( 0 [,) +oo ) ) |
| 52 |
|
elpwinss |
|- ( y e. ( ~P X i^i Fin ) -> y C_ X ) |
| 53 |
52
|
adantl |
|- ( ( ( ph /\ -. ( sum^ ` G ) = +oo ) /\ y e. ( ~P X i^i Fin ) ) -> y C_ X ) |
| 54 |
51 53
|
fssresd |
|- ( ( ( ph /\ -. ( sum^ ` G ) = +oo ) /\ y e. ( ~P X i^i Fin ) ) -> ( F |` y ) : y --> ( 0 [,) +oo ) ) |
| 55 |
14 54
|
sge0fsum |
|- ( ( ( ph /\ -. ( sum^ ` G ) = +oo ) /\ y e. ( ~P X i^i Fin ) ) -> ( sum^ ` ( F |` y ) ) = sum_ x e. y ( ( F |` y ) ` x ) ) |
| 56 |
|
rge0ssre |
|- ( 0 [,) +oo ) C_ RR |
| 57 |
54
|
ffvelcdmda |
|- ( ( ( ( ph /\ -. ( sum^ ` G ) = +oo ) /\ y e. ( ~P X i^i Fin ) ) /\ x e. y ) -> ( ( F |` y ) ` x ) e. ( 0 [,) +oo ) ) |
| 58 |
56 57
|
sselid |
|- ( ( ( ( ph /\ -. ( sum^ ` G ) = +oo ) /\ y e. ( ~P X i^i Fin ) ) /\ x e. y ) -> ( ( F |` y ) ` x ) e. RR ) |
| 59 |
14 58
|
fsumrecl |
|- ( ( ( ph /\ -. ( sum^ ` G ) = +oo ) /\ y e. ( ~P X i^i Fin ) ) -> sum_ x e. y ( ( F |` y ) ` x ) e. RR ) |
| 60 |
55 59
|
eqeltrd |
|- ( ( ( ph /\ -. ( sum^ ` G ) = +oo ) /\ y e. ( ~P X i^i Fin ) ) -> ( sum^ ` ( F |` y ) ) e. RR ) |
| 61 |
3
|
adantr |
|- ( ( ph /\ -. ( sum^ ` G ) = +oo ) -> G : X --> ( 0 [,] +oo ) ) |
| 62 |
1
|
adantr |
|- ( ( ph /\ -. ( sum^ ` G ) = +oo ) -> X e. V ) |
| 63 |
|
simpr |
|- ( ( ph /\ -. ( sum^ ` G ) = +oo ) -> -. ( sum^ ` G ) = +oo ) |
| 64 |
62 61
|
sge0repnf |
|- ( ( ph /\ -. ( sum^ ` G ) = +oo ) -> ( ( sum^ ` G ) e. RR <-> -. ( sum^ ` G ) = +oo ) ) |
| 65 |
63 64
|
mpbird |
|- ( ( ph /\ -. ( sum^ ` G ) = +oo ) -> ( sum^ ` G ) e. RR ) |
| 66 |
62 61 65
|
sge0rern |
|- ( ( ph /\ -. ( sum^ ` G ) = +oo ) -> -. +oo e. ran G ) |
| 67 |
61 66
|
fge0iccico |
|- ( ( ph /\ -. ( sum^ ` G ) = +oo ) -> G : X --> ( 0 [,) +oo ) ) |
| 68 |
67
|
adantr |
|- ( ( ( ph /\ -. ( sum^ ` G ) = +oo ) /\ y e. ( ~P X i^i Fin ) ) -> G : X --> ( 0 [,) +oo ) ) |
| 69 |
68 53
|
fssresd |
|- ( ( ( ph /\ -. ( sum^ ` G ) = +oo ) /\ y e. ( ~P X i^i Fin ) ) -> ( G |` y ) : y --> ( 0 [,) +oo ) ) |
| 70 |
14 69
|
sge0fsum |
|- ( ( ( ph /\ -. ( sum^ ` G ) = +oo ) /\ y e. ( ~P X i^i Fin ) ) -> ( sum^ ` ( G |` y ) ) = sum_ x e. y ( ( G |` y ) ` x ) ) |
| 71 |
69
|
ffvelcdmda |
|- ( ( ( ( ph /\ -. ( sum^ ` G ) = +oo ) /\ y e. ( ~P X i^i Fin ) ) /\ x e. y ) -> ( ( G |` y ) ` x ) e. ( 0 [,) +oo ) ) |
| 72 |
56 71
|
sselid |
|- ( ( ( ( ph /\ -. ( sum^ ` G ) = +oo ) /\ y e. ( ~P X i^i Fin ) ) /\ x e. y ) -> ( ( G |` y ) ` x ) e. RR ) |
| 73 |
14 72
|
fsumrecl |
|- ( ( ( ph /\ -. ( sum^ ` G ) = +oo ) /\ y e. ( ~P X i^i Fin ) ) -> sum_ x e. y ( ( G |` y ) ` x ) e. RR ) |
| 74 |
70 73
|
eqeltrd |
|- ( ( ( ph /\ -. ( sum^ ` G ) = +oo ) /\ y e. ( ~P X i^i Fin ) ) -> ( sum^ ` ( G |` y ) ) e. RR ) |
| 75 |
65
|
adantr |
|- ( ( ( ph /\ -. ( sum^ ` G ) = +oo ) /\ y e. ( ~P X i^i Fin ) ) -> ( sum^ ` G ) e. RR ) |
| 76 |
|
simplll |
|- ( ( ( ( ph /\ -. ( sum^ ` G ) = +oo ) /\ y e. ( ~P X i^i Fin ) ) /\ x e. y ) -> ph ) |
| 77 |
53
|
sselda |
|- ( ( ( ( ph /\ -. ( sum^ ` G ) = +oo ) /\ y e. ( ~P X i^i Fin ) ) /\ x e. y ) -> x e. X ) |
| 78 |
76 77 4
|
syl2anc |
|- ( ( ( ( ph /\ -. ( sum^ ` G ) = +oo ) /\ y e. ( ~P X i^i Fin ) ) /\ x e. y ) -> ( F ` x ) <_ ( G ` x ) ) |
| 79 |
|
fvres |
|- ( x e. y -> ( ( F |` y ) ` x ) = ( F ` x ) ) |
| 80 |
79
|
adantl |
|- ( ( ( ( ph /\ -. ( sum^ ` G ) = +oo ) /\ y e. ( ~P X i^i Fin ) ) /\ x e. y ) -> ( ( F |` y ) ` x ) = ( F ` x ) ) |
| 81 |
|
fvres |
|- ( x e. y -> ( ( G |` y ) ` x ) = ( G ` x ) ) |
| 82 |
81
|
adantl |
|- ( ( ( ( ph /\ -. ( sum^ ` G ) = +oo ) /\ y e. ( ~P X i^i Fin ) ) /\ x e. y ) -> ( ( G |` y ) ` x ) = ( G ` x ) ) |
| 83 |
80 82
|
breq12d |
|- ( ( ( ( ph /\ -. ( sum^ ` G ) = +oo ) /\ y e. ( ~P X i^i Fin ) ) /\ x e. y ) -> ( ( ( F |` y ) ` x ) <_ ( ( G |` y ) ` x ) <-> ( F ` x ) <_ ( G ` x ) ) ) |
| 84 |
78 83
|
mpbird |
|- ( ( ( ( ph /\ -. ( sum^ ` G ) = +oo ) /\ y e. ( ~P X i^i Fin ) ) /\ x e. y ) -> ( ( F |` y ) ` x ) <_ ( ( G |` y ) ` x ) ) |
| 85 |
14 58 72 84
|
fsumle |
|- ( ( ( ph /\ -. ( sum^ ` G ) = +oo ) /\ y e. ( ~P X i^i Fin ) ) -> sum_ x e. y ( ( F |` y ) ` x ) <_ sum_ x e. y ( ( G |` y ) ` x ) ) |
| 86 |
55 70
|
breq12d |
|- ( ( ( ph /\ -. ( sum^ ` G ) = +oo ) /\ y e. ( ~P X i^i Fin ) ) -> ( ( sum^ ` ( F |` y ) ) <_ ( sum^ ` ( G |` y ) ) <-> sum_ x e. y ( ( F |` y ) ` x ) <_ sum_ x e. y ( ( G |` y ) ` x ) ) ) |
| 87 |
85 86
|
mpbird |
|- ( ( ( ph /\ -. ( sum^ ` G ) = +oo ) /\ y e. ( ~P X i^i Fin ) ) -> ( sum^ ` ( F |` y ) ) <_ ( sum^ ` ( G |` y ) ) ) |
| 88 |
1
|
adantr |
|- ( ( ph /\ y e. ( ~P X i^i Fin ) ) -> X e. V ) |
| 89 |
3
|
adantr |
|- ( ( ph /\ y e. ( ~P X i^i Fin ) ) -> G : X --> ( 0 [,] +oo ) ) |
| 90 |
88 89
|
sge0less |
|- ( ( ph /\ y e. ( ~P X i^i Fin ) ) -> ( sum^ ` ( G |` y ) ) <_ ( sum^ ` G ) ) |
| 91 |
90
|
adantlr |
|- ( ( ( ph /\ -. ( sum^ ` G ) = +oo ) /\ y e. ( ~P X i^i Fin ) ) -> ( sum^ ` ( G |` y ) ) <_ ( sum^ ` G ) ) |
| 92 |
60 74 75 87 91
|
letrd |
|- ( ( ( ph /\ -. ( sum^ ` G ) = +oo ) /\ y e. ( ~P X i^i Fin ) ) -> ( sum^ ` ( F |` y ) ) <_ ( sum^ ` G ) ) |
| 93 |
92
|
ralrimiva |
|- ( ( ph /\ -. ( sum^ ` G ) = +oo ) -> A. y e. ( ~P X i^i Fin ) ( sum^ ` ( F |` y ) ) <_ ( sum^ ` G ) ) |
| 94 |
62 61
|
sge0xrcl |
|- ( ( ph /\ -. ( sum^ ` G ) = +oo ) -> ( sum^ ` G ) e. RR* ) |
| 95 |
62 15 94
|
sge0lefi |
|- ( ( ph /\ -. ( sum^ ` G ) = +oo ) -> ( ( sum^ ` F ) <_ ( sum^ ` G ) <-> A. y e. ( ~P X i^i Fin ) ( sum^ ` ( F |` y ) ) <_ ( sum^ ` G ) ) ) |
| 96 |
93 95
|
mpbird |
|- ( ( ph /\ -. ( sum^ ` G ) = +oo ) -> ( sum^ ` F ) <_ ( sum^ ` G ) ) |
| 97 |
12 96
|
pm2.61dan |
|- ( ph -> ( sum^ ` F ) <_ ( sum^ ` G ) ) |