| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sge0p1.1 | ⊢ ( 𝜑  →  𝑁  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 2 |  | sge0p1.2 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ... ( 𝑁  +  1 ) ) )  →  𝐴  ∈  ( 0 [,] +∞ ) ) | 
						
							| 3 |  | sge0p1.3 | ⊢ ( 𝑘  =  ( 𝑁  +  1 )  →  𝐴  =  𝐵 ) | 
						
							| 4 |  | fzsuc | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( 𝑀 ... ( 𝑁  +  1 ) )  =  ( ( 𝑀 ... 𝑁 )  ∪  { ( 𝑁  +  1 ) } ) ) | 
						
							| 5 | 1 4 | syl | ⊢ ( 𝜑  →  ( 𝑀 ... ( 𝑁  +  1 ) )  =  ( ( 𝑀 ... 𝑁 )  ∪  { ( 𝑁  +  1 ) } ) ) | 
						
							| 6 | 5 | mpteq1d | ⊢ ( 𝜑  →  ( 𝑘  ∈  ( 𝑀 ... ( 𝑁  +  1 ) )  ↦  𝐴 )  =  ( 𝑘  ∈  ( ( 𝑀 ... 𝑁 )  ∪  { ( 𝑁  +  1 ) } )  ↦  𝐴 ) ) | 
						
							| 7 | 6 | fveq2d | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑘  ∈  ( 𝑀 ... ( 𝑁  +  1 ) )  ↦  𝐴 ) )  =  ( Σ^ ‘ ( 𝑘  ∈  ( ( 𝑀 ... 𝑁 )  ∪  { ( 𝑁  +  1 ) } )  ↦  𝐴 ) ) ) | 
						
							| 8 |  | nfv | ⊢ Ⅎ 𝑘 𝜑 | 
						
							| 9 |  | ovex | ⊢ ( 𝑀 ... 𝑁 )  ∈  V | 
						
							| 10 | 9 | a1i | ⊢ ( 𝜑  →  ( 𝑀 ... 𝑁 )  ∈  V ) | 
						
							| 11 |  | snex | ⊢ { ( 𝑁  +  1 ) }  ∈  V | 
						
							| 12 | 11 | a1i | ⊢ ( 𝜑  →  { ( 𝑁  +  1 ) }  ∈  V ) | 
						
							| 13 |  | fzp1disj | ⊢ ( ( 𝑀 ... 𝑁 )  ∩  { ( 𝑁  +  1 ) } )  =  ∅ | 
						
							| 14 | 13 | a1i | ⊢ ( 𝜑  →  ( ( 𝑀 ... 𝑁 )  ∩  { ( 𝑁  +  1 ) } )  =  ∅ ) | 
						
							| 15 |  | 0xr | ⊢ 0  ∈  ℝ* | 
						
							| 16 | 15 | a1i | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ... 𝑁 ) )  →  0  ∈  ℝ* ) | 
						
							| 17 |  | pnfxr | ⊢ +∞  ∈  ℝ* | 
						
							| 18 | 17 | a1i | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ... 𝑁 ) )  →  +∞  ∈  ℝ* ) | 
						
							| 19 |  | iccssxr | ⊢ ( 0 [,] +∞ )  ⊆  ℝ* | 
						
							| 20 |  | simpl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ... 𝑁 ) )  →  𝜑 ) | 
						
							| 21 |  | fzelp1 | ⊢ ( 𝑘  ∈  ( 𝑀 ... 𝑁 )  →  𝑘  ∈  ( 𝑀 ... ( 𝑁  +  1 ) ) ) | 
						
							| 22 | 21 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ... 𝑁 ) )  →  𝑘  ∈  ( 𝑀 ... ( 𝑁  +  1 ) ) ) | 
						
							| 23 | 20 22 2 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ... 𝑁 ) )  →  𝐴  ∈  ( 0 [,] +∞ ) ) | 
						
							| 24 | 19 23 | sselid | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ... 𝑁 ) )  →  𝐴  ∈  ℝ* ) | 
						
							| 25 |  | iccgelb | ⊢ ( ( 0  ∈  ℝ*  ∧  +∞  ∈  ℝ*  ∧  𝐴  ∈  ( 0 [,] +∞ ) )  →  0  ≤  𝐴 ) | 
						
							| 26 | 16 18 23 25 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ... 𝑁 ) )  →  0  ≤  𝐴 ) | 
						
							| 27 |  | iccleub | ⊢ ( ( 0  ∈  ℝ*  ∧  +∞  ∈  ℝ*  ∧  𝐴  ∈  ( 0 [,] +∞ ) )  →  𝐴  ≤  +∞ ) | 
						
							| 28 | 16 18 23 27 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ... 𝑁 ) )  →  𝐴  ≤  +∞ ) | 
						
							| 29 | 16 18 24 26 28 | eliccxrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ... 𝑁 ) )  →  𝐴  ∈  ( 0 [,] +∞ ) ) | 
						
							| 30 |  | simpl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  { ( 𝑁  +  1 ) } )  →  𝜑 ) | 
						
							| 31 |  | elsni | ⊢ ( 𝑘  ∈  { ( 𝑁  +  1 ) }  →  𝑘  =  ( 𝑁  +  1 ) ) | 
						
							| 32 | 31 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  { ( 𝑁  +  1 ) } )  →  𝑘  =  ( 𝑁  +  1 ) ) | 
						
							| 33 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑘  =  ( 𝑁  +  1 ) )  →  𝑘  =  ( 𝑁  +  1 ) ) | 
						
							| 34 |  | peano2uz | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( 𝑁  +  1 )  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 35 |  | eluzfz2 | ⊢ ( ( 𝑁  +  1 )  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( 𝑁  +  1 )  ∈  ( 𝑀 ... ( 𝑁  +  1 ) ) ) | 
						
							| 36 | 1 34 35 | 3syl | ⊢ ( 𝜑  →  ( 𝑁  +  1 )  ∈  ( 𝑀 ... ( 𝑁  +  1 ) ) ) | 
						
							| 37 | 36 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  =  ( 𝑁  +  1 ) )  →  ( 𝑁  +  1 )  ∈  ( 𝑀 ... ( 𝑁  +  1 ) ) ) | 
						
							| 38 | 33 37 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑘  =  ( 𝑁  +  1 ) )  →  𝑘  ∈  ( 𝑀 ... ( 𝑁  +  1 ) ) ) | 
						
							| 39 | 30 32 38 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  { ( 𝑁  +  1 ) } )  →  𝑘  ∈  ( 𝑀 ... ( 𝑁  +  1 ) ) ) | 
						
							| 40 | 30 39 2 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  { ( 𝑁  +  1 ) } )  →  𝐴  ∈  ( 0 [,] +∞ ) ) | 
						
							| 41 | 8 10 12 14 29 40 | sge0splitmpt | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑘  ∈  ( ( 𝑀 ... 𝑁 )  ∪  { ( 𝑁  +  1 ) } )  ↦  𝐴 ) )  =  ( ( Σ^ ‘ ( 𝑘  ∈  ( 𝑀 ... 𝑁 )  ↦  𝐴 ) )  +𝑒  ( Σ^ ‘ ( 𝑘  ∈  { ( 𝑁  +  1 ) }  ↦  𝐴 ) ) ) ) | 
						
							| 42 |  | ovex | ⊢ ( 𝑁  +  1 )  ∈  V | 
						
							| 43 | 42 | a1i | ⊢ ( 𝜑  →  ( 𝑁  +  1 )  ∈  V ) | 
						
							| 44 |  | id | ⊢ ( 𝜑  →  𝜑 ) | 
						
							| 45 |  | eleq1 | ⊢ ( 𝑘  =  ( 𝑁  +  1 )  →  ( 𝑘  ∈  ( 𝑀 ... ( 𝑁  +  1 ) )  ↔  ( 𝑁  +  1 )  ∈  ( 𝑀 ... ( 𝑁  +  1 ) ) ) ) | 
						
							| 46 | 45 | anbi2d | ⊢ ( 𝑘  =  ( 𝑁  +  1 )  →  ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ... ( 𝑁  +  1 ) ) )  ↔  ( 𝜑  ∧  ( 𝑁  +  1 )  ∈  ( 𝑀 ... ( 𝑁  +  1 ) ) ) ) ) | 
						
							| 47 | 3 | eleq1d | ⊢ ( 𝑘  =  ( 𝑁  +  1 )  →  ( 𝐴  ∈  ( 0 [,] +∞ )  ↔  𝐵  ∈  ( 0 [,] +∞ ) ) ) | 
						
							| 48 | 46 47 | imbi12d | ⊢ ( 𝑘  =  ( 𝑁  +  1 )  →  ( ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ... ( 𝑁  +  1 ) ) )  →  𝐴  ∈  ( 0 [,] +∞ ) )  ↔  ( ( 𝜑  ∧  ( 𝑁  +  1 )  ∈  ( 𝑀 ... ( 𝑁  +  1 ) ) )  →  𝐵  ∈  ( 0 [,] +∞ ) ) ) ) | 
						
							| 49 | 48 2 | vtoclg | ⊢ ( ( 𝑁  +  1 )  ∈  V  →  ( ( 𝜑  ∧  ( 𝑁  +  1 )  ∈  ( 𝑀 ... ( 𝑁  +  1 ) ) )  →  𝐵  ∈  ( 0 [,] +∞ ) ) ) | 
						
							| 50 | 42 49 | ax-mp | ⊢ ( ( 𝜑  ∧  ( 𝑁  +  1 )  ∈  ( 𝑀 ... ( 𝑁  +  1 ) ) )  →  𝐵  ∈  ( 0 [,] +∞ ) ) | 
						
							| 51 | 44 36 50 | syl2anc | ⊢ ( 𝜑  →  𝐵  ∈  ( 0 [,] +∞ ) ) | 
						
							| 52 | 43 51 3 | sge0snmpt | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑘  ∈  { ( 𝑁  +  1 ) }  ↦  𝐴 ) )  =  𝐵 ) | 
						
							| 53 | 52 | oveq2d | ⊢ ( 𝜑  →  ( ( Σ^ ‘ ( 𝑘  ∈  ( 𝑀 ... 𝑁 )  ↦  𝐴 ) )  +𝑒  ( Σ^ ‘ ( 𝑘  ∈  { ( 𝑁  +  1 ) }  ↦  𝐴 ) ) )  =  ( ( Σ^ ‘ ( 𝑘  ∈  ( 𝑀 ... 𝑁 )  ↦  𝐴 ) )  +𝑒  𝐵 ) ) | 
						
							| 54 | 7 41 53 | 3eqtrd | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑘  ∈  ( 𝑀 ... ( 𝑁  +  1 ) )  ↦  𝐴 ) )  =  ( ( Σ^ ‘ ( 𝑘  ∈  ( 𝑀 ... 𝑁 )  ↦  𝐴 ) )  +𝑒  𝐵 ) ) |