Step |
Hyp |
Ref |
Expression |
1 |
|
sge0p1.1 |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
2 |
|
sge0p1.2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) → 𝐴 ∈ ( 0 [,] +∞ ) ) |
3 |
|
sge0p1.3 |
⊢ ( 𝑘 = ( 𝑁 + 1 ) → 𝐴 = 𝐵 ) |
4 |
|
fzsuc |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑀 ... ( 𝑁 + 1 ) ) = ( ( 𝑀 ... 𝑁 ) ∪ { ( 𝑁 + 1 ) } ) ) |
5 |
1 4
|
syl |
⊢ ( 𝜑 → ( 𝑀 ... ( 𝑁 + 1 ) ) = ( ( 𝑀 ... 𝑁 ) ∪ { ( 𝑁 + 1 ) } ) ) |
6 |
5
|
mpteq1d |
⊢ ( 𝜑 → ( 𝑘 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ↦ 𝐴 ) = ( 𝑘 ∈ ( ( 𝑀 ... 𝑁 ) ∪ { ( 𝑁 + 1 ) } ) ↦ 𝐴 ) ) |
7 |
6
|
fveq2d |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑘 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ↦ 𝐴 ) ) = ( Σ^ ‘ ( 𝑘 ∈ ( ( 𝑀 ... 𝑁 ) ∪ { ( 𝑁 + 1 ) } ) ↦ 𝐴 ) ) ) |
8 |
|
nfv |
⊢ Ⅎ 𝑘 𝜑 |
9 |
|
ovex |
⊢ ( 𝑀 ... 𝑁 ) ∈ V |
10 |
9
|
a1i |
⊢ ( 𝜑 → ( 𝑀 ... 𝑁 ) ∈ V ) |
11 |
|
snex |
⊢ { ( 𝑁 + 1 ) } ∈ V |
12 |
11
|
a1i |
⊢ ( 𝜑 → { ( 𝑁 + 1 ) } ∈ V ) |
13 |
|
fzp1disj |
⊢ ( ( 𝑀 ... 𝑁 ) ∩ { ( 𝑁 + 1 ) } ) = ∅ |
14 |
13
|
a1i |
⊢ ( 𝜑 → ( ( 𝑀 ... 𝑁 ) ∩ { ( 𝑁 + 1 ) } ) = ∅ ) |
15 |
|
0xr |
⊢ 0 ∈ ℝ* |
16 |
15
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → 0 ∈ ℝ* ) |
17 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
18 |
17
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → +∞ ∈ ℝ* ) |
19 |
|
iccssxr |
⊢ ( 0 [,] +∞ ) ⊆ ℝ* |
20 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → 𝜑 ) |
21 |
|
fzelp1 |
⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) → 𝑘 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
22 |
21
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑘 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
23 |
20 22 2
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → 𝐴 ∈ ( 0 [,] +∞ ) ) |
24 |
19 23
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → 𝐴 ∈ ℝ* ) |
25 |
|
iccgelb |
⊢ ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝐴 ∈ ( 0 [,] +∞ ) ) → 0 ≤ 𝐴 ) |
26 |
16 18 23 25
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → 0 ≤ 𝐴 ) |
27 |
|
iccleub |
⊢ ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝐴 ∈ ( 0 [,] +∞ ) ) → 𝐴 ≤ +∞ ) |
28 |
16 18 23 27
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → 𝐴 ≤ +∞ ) |
29 |
16 18 24 26 28
|
eliccxrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → 𝐴 ∈ ( 0 [,] +∞ ) ) |
30 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { ( 𝑁 + 1 ) } ) → 𝜑 ) |
31 |
|
elsni |
⊢ ( 𝑘 ∈ { ( 𝑁 + 1 ) } → 𝑘 = ( 𝑁 + 1 ) ) |
32 |
31
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { ( 𝑁 + 1 ) } ) → 𝑘 = ( 𝑁 + 1 ) ) |
33 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 = ( 𝑁 + 1 ) ) → 𝑘 = ( 𝑁 + 1 ) ) |
34 |
|
peano2uz |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
35 |
|
eluzfz2 |
⊢ ( ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑁 + 1 ) ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
36 |
1 34 35
|
3syl |
⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
37 |
36
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 = ( 𝑁 + 1 ) ) → ( 𝑁 + 1 ) ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
38 |
33 37
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 = ( 𝑁 + 1 ) ) → 𝑘 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
39 |
30 32 38
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { ( 𝑁 + 1 ) } ) → 𝑘 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
40 |
30 39 2
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { ( 𝑁 + 1 ) } ) → 𝐴 ∈ ( 0 [,] +∞ ) ) |
41 |
8 10 12 14 29 40
|
sge0splitmpt |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑘 ∈ ( ( 𝑀 ... 𝑁 ) ∪ { ( 𝑁 + 1 ) } ) ↦ 𝐴 ) ) = ( ( Σ^ ‘ ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↦ 𝐴 ) ) +𝑒 ( Σ^ ‘ ( 𝑘 ∈ { ( 𝑁 + 1 ) } ↦ 𝐴 ) ) ) ) |
42 |
|
ovex |
⊢ ( 𝑁 + 1 ) ∈ V |
43 |
42
|
a1i |
⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ V ) |
44 |
|
id |
⊢ ( 𝜑 → 𝜑 ) |
45 |
|
eleq1 |
⊢ ( 𝑘 = ( 𝑁 + 1 ) → ( 𝑘 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ↔ ( 𝑁 + 1 ) ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) ) |
46 |
45
|
anbi2d |
⊢ ( 𝑘 = ( 𝑁 + 1 ) → ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) ↔ ( 𝜑 ∧ ( 𝑁 + 1 ) ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) ) ) |
47 |
3
|
eleq1d |
⊢ ( 𝑘 = ( 𝑁 + 1 ) → ( 𝐴 ∈ ( 0 [,] +∞ ) ↔ 𝐵 ∈ ( 0 [,] +∞ ) ) ) |
48 |
46 47
|
imbi12d |
⊢ ( 𝑘 = ( 𝑁 + 1 ) → ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) → 𝐴 ∈ ( 0 [,] +∞ ) ) ↔ ( ( 𝜑 ∧ ( 𝑁 + 1 ) ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) → 𝐵 ∈ ( 0 [,] +∞ ) ) ) ) |
49 |
48 2
|
vtoclg |
⊢ ( ( 𝑁 + 1 ) ∈ V → ( ( 𝜑 ∧ ( 𝑁 + 1 ) ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) → 𝐵 ∈ ( 0 [,] +∞ ) ) ) |
50 |
42 49
|
ax-mp |
⊢ ( ( 𝜑 ∧ ( 𝑁 + 1 ) ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) → 𝐵 ∈ ( 0 [,] +∞ ) ) |
51 |
44 36 50
|
syl2anc |
⊢ ( 𝜑 → 𝐵 ∈ ( 0 [,] +∞ ) ) |
52 |
43 51 3
|
sge0snmpt |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑘 ∈ { ( 𝑁 + 1 ) } ↦ 𝐴 ) ) = 𝐵 ) |
53 |
52
|
oveq2d |
⊢ ( 𝜑 → ( ( Σ^ ‘ ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↦ 𝐴 ) ) +𝑒 ( Σ^ ‘ ( 𝑘 ∈ { ( 𝑁 + 1 ) } ↦ 𝐴 ) ) ) = ( ( Σ^ ‘ ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↦ 𝐴 ) ) +𝑒 𝐵 ) ) |
54 |
7 41 53
|
3eqtrd |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑘 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ↦ 𝐴 ) ) = ( ( Σ^ ‘ ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↦ 𝐴 ) ) +𝑒 𝐵 ) ) |