| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sge0p1.1 |  |-  ( ph -> N e. ( ZZ>= ` M ) ) | 
						
							| 2 |  | sge0p1.2 |  |-  ( ( ph /\ k e. ( M ... ( N + 1 ) ) ) -> A e. ( 0 [,] +oo ) ) | 
						
							| 3 |  | sge0p1.3 |  |-  ( k = ( N + 1 ) -> A = B ) | 
						
							| 4 |  | fzsuc |  |-  ( N e. ( ZZ>= ` M ) -> ( M ... ( N + 1 ) ) = ( ( M ... N ) u. { ( N + 1 ) } ) ) | 
						
							| 5 | 1 4 | syl |  |-  ( ph -> ( M ... ( N + 1 ) ) = ( ( M ... N ) u. { ( N + 1 ) } ) ) | 
						
							| 6 | 5 | mpteq1d |  |-  ( ph -> ( k e. ( M ... ( N + 1 ) ) |-> A ) = ( k e. ( ( M ... N ) u. { ( N + 1 ) } ) |-> A ) ) | 
						
							| 7 | 6 | fveq2d |  |-  ( ph -> ( sum^ ` ( k e. ( M ... ( N + 1 ) ) |-> A ) ) = ( sum^ ` ( k e. ( ( M ... N ) u. { ( N + 1 ) } ) |-> A ) ) ) | 
						
							| 8 |  | nfv |  |-  F/ k ph | 
						
							| 9 |  | ovex |  |-  ( M ... N ) e. _V | 
						
							| 10 | 9 | a1i |  |-  ( ph -> ( M ... N ) e. _V ) | 
						
							| 11 |  | snex |  |-  { ( N + 1 ) } e. _V | 
						
							| 12 | 11 | a1i |  |-  ( ph -> { ( N + 1 ) } e. _V ) | 
						
							| 13 |  | fzp1disj |  |-  ( ( M ... N ) i^i { ( N + 1 ) } ) = (/) | 
						
							| 14 | 13 | a1i |  |-  ( ph -> ( ( M ... N ) i^i { ( N + 1 ) } ) = (/) ) | 
						
							| 15 |  | 0xr |  |-  0 e. RR* | 
						
							| 16 | 15 | a1i |  |-  ( ( ph /\ k e. ( M ... N ) ) -> 0 e. RR* ) | 
						
							| 17 |  | pnfxr |  |-  +oo e. RR* | 
						
							| 18 | 17 | a1i |  |-  ( ( ph /\ k e. ( M ... N ) ) -> +oo e. RR* ) | 
						
							| 19 |  | iccssxr |  |-  ( 0 [,] +oo ) C_ RR* | 
						
							| 20 |  | simpl |  |-  ( ( ph /\ k e. ( M ... N ) ) -> ph ) | 
						
							| 21 |  | fzelp1 |  |-  ( k e. ( M ... N ) -> k e. ( M ... ( N + 1 ) ) ) | 
						
							| 22 | 21 | adantl |  |-  ( ( ph /\ k e. ( M ... N ) ) -> k e. ( M ... ( N + 1 ) ) ) | 
						
							| 23 | 20 22 2 | syl2anc |  |-  ( ( ph /\ k e. ( M ... N ) ) -> A e. ( 0 [,] +oo ) ) | 
						
							| 24 | 19 23 | sselid |  |-  ( ( ph /\ k e. ( M ... N ) ) -> A e. RR* ) | 
						
							| 25 |  | iccgelb |  |-  ( ( 0 e. RR* /\ +oo e. RR* /\ A e. ( 0 [,] +oo ) ) -> 0 <_ A ) | 
						
							| 26 | 16 18 23 25 | syl3anc |  |-  ( ( ph /\ k e. ( M ... N ) ) -> 0 <_ A ) | 
						
							| 27 |  | iccleub |  |-  ( ( 0 e. RR* /\ +oo e. RR* /\ A e. ( 0 [,] +oo ) ) -> A <_ +oo ) | 
						
							| 28 | 16 18 23 27 | syl3anc |  |-  ( ( ph /\ k e. ( M ... N ) ) -> A <_ +oo ) | 
						
							| 29 | 16 18 24 26 28 | eliccxrd |  |-  ( ( ph /\ k e. ( M ... N ) ) -> A e. ( 0 [,] +oo ) ) | 
						
							| 30 |  | simpl |  |-  ( ( ph /\ k e. { ( N + 1 ) } ) -> ph ) | 
						
							| 31 |  | elsni |  |-  ( k e. { ( N + 1 ) } -> k = ( N + 1 ) ) | 
						
							| 32 | 31 | adantl |  |-  ( ( ph /\ k e. { ( N + 1 ) } ) -> k = ( N + 1 ) ) | 
						
							| 33 |  | simpr |  |-  ( ( ph /\ k = ( N + 1 ) ) -> k = ( N + 1 ) ) | 
						
							| 34 |  | peano2uz |  |-  ( N e. ( ZZ>= ` M ) -> ( N + 1 ) e. ( ZZ>= ` M ) ) | 
						
							| 35 |  | eluzfz2 |  |-  ( ( N + 1 ) e. ( ZZ>= ` M ) -> ( N + 1 ) e. ( M ... ( N + 1 ) ) ) | 
						
							| 36 | 1 34 35 | 3syl |  |-  ( ph -> ( N + 1 ) e. ( M ... ( N + 1 ) ) ) | 
						
							| 37 | 36 | adantr |  |-  ( ( ph /\ k = ( N + 1 ) ) -> ( N + 1 ) e. ( M ... ( N + 1 ) ) ) | 
						
							| 38 | 33 37 | eqeltrd |  |-  ( ( ph /\ k = ( N + 1 ) ) -> k e. ( M ... ( N + 1 ) ) ) | 
						
							| 39 | 30 32 38 | syl2anc |  |-  ( ( ph /\ k e. { ( N + 1 ) } ) -> k e. ( M ... ( N + 1 ) ) ) | 
						
							| 40 | 30 39 2 | syl2anc |  |-  ( ( ph /\ k e. { ( N + 1 ) } ) -> A e. ( 0 [,] +oo ) ) | 
						
							| 41 | 8 10 12 14 29 40 | sge0splitmpt |  |-  ( ph -> ( sum^ ` ( k e. ( ( M ... N ) u. { ( N + 1 ) } ) |-> A ) ) = ( ( sum^ ` ( k e. ( M ... N ) |-> A ) ) +e ( sum^ ` ( k e. { ( N + 1 ) } |-> A ) ) ) ) | 
						
							| 42 |  | ovex |  |-  ( N + 1 ) e. _V | 
						
							| 43 | 42 | a1i |  |-  ( ph -> ( N + 1 ) e. _V ) | 
						
							| 44 |  | id |  |-  ( ph -> ph ) | 
						
							| 45 |  | eleq1 |  |-  ( k = ( N + 1 ) -> ( k e. ( M ... ( N + 1 ) ) <-> ( N + 1 ) e. ( M ... ( N + 1 ) ) ) ) | 
						
							| 46 | 45 | anbi2d |  |-  ( k = ( N + 1 ) -> ( ( ph /\ k e. ( M ... ( N + 1 ) ) ) <-> ( ph /\ ( N + 1 ) e. ( M ... ( N + 1 ) ) ) ) ) | 
						
							| 47 | 3 | eleq1d |  |-  ( k = ( N + 1 ) -> ( A e. ( 0 [,] +oo ) <-> B e. ( 0 [,] +oo ) ) ) | 
						
							| 48 | 46 47 | imbi12d |  |-  ( k = ( N + 1 ) -> ( ( ( ph /\ k e. ( M ... ( N + 1 ) ) ) -> A e. ( 0 [,] +oo ) ) <-> ( ( ph /\ ( N + 1 ) e. ( M ... ( N + 1 ) ) ) -> B e. ( 0 [,] +oo ) ) ) ) | 
						
							| 49 | 48 2 | vtoclg |  |-  ( ( N + 1 ) e. _V -> ( ( ph /\ ( N + 1 ) e. ( M ... ( N + 1 ) ) ) -> B e. ( 0 [,] +oo ) ) ) | 
						
							| 50 | 42 49 | ax-mp |  |-  ( ( ph /\ ( N + 1 ) e. ( M ... ( N + 1 ) ) ) -> B e. ( 0 [,] +oo ) ) | 
						
							| 51 | 44 36 50 | syl2anc |  |-  ( ph -> B e. ( 0 [,] +oo ) ) | 
						
							| 52 | 43 51 3 | sge0snmpt |  |-  ( ph -> ( sum^ ` ( k e. { ( N + 1 ) } |-> A ) ) = B ) | 
						
							| 53 | 52 | oveq2d |  |-  ( ph -> ( ( sum^ ` ( k e. ( M ... N ) |-> A ) ) +e ( sum^ ` ( k e. { ( N + 1 ) } |-> A ) ) ) = ( ( sum^ ` ( k e. ( M ... N ) |-> A ) ) +e B ) ) | 
						
							| 54 | 7 41 53 | 3eqtrd |  |-  ( ph -> ( sum^ ` ( k e. ( M ... ( N + 1 ) ) |-> A ) ) = ( ( sum^ ` ( k e. ( M ... N ) |-> A ) ) +e B ) ) |