| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sge0p1.1 |
|- ( ph -> N e. ( ZZ>= ` M ) ) |
| 2 |
|
sge0p1.2 |
|- ( ( ph /\ k e. ( M ... ( N + 1 ) ) ) -> A e. ( 0 [,] +oo ) ) |
| 3 |
|
sge0p1.3 |
|- ( k = ( N + 1 ) -> A = B ) |
| 4 |
|
fzsuc |
|- ( N e. ( ZZ>= ` M ) -> ( M ... ( N + 1 ) ) = ( ( M ... N ) u. { ( N + 1 ) } ) ) |
| 5 |
1 4
|
syl |
|- ( ph -> ( M ... ( N + 1 ) ) = ( ( M ... N ) u. { ( N + 1 ) } ) ) |
| 6 |
5
|
mpteq1d |
|- ( ph -> ( k e. ( M ... ( N + 1 ) ) |-> A ) = ( k e. ( ( M ... N ) u. { ( N + 1 ) } ) |-> A ) ) |
| 7 |
6
|
fveq2d |
|- ( ph -> ( sum^ ` ( k e. ( M ... ( N + 1 ) ) |-> A ) ) = ( sum^ ` ( k e. ( ( M ... N ) u. { ( N + 1 ) } ) |-> A ) ) ) |
| 8 |
|
nfv |
|- F/ k ph |
| 9 |
|
ovex |
|- ( M ... N ) e. _V |
| 10 |
9
|
a1i |
|- ( ph -> ( M ... N ) e. _V ) |
| 11 |
|
snex |
|- { ( N + 1 ) } e. _V |
| 12 |
11
|
a1i |
|- ( ph -> { ( N + 1 ) } e. _V ) |
| 13 |
|
fzp1disj |
|- ( ( M ... N ) i^i { ( N + 1 ) } ) = (/) |
| 14 |
13
|
a1i |
|- ( ph -> ( ( M ... N ) i^i { ( N + 1 ) } ) = (/) ) |
| 15 |
|
0xr |
|- 0 e. RR* |
| 16 |
15
|
a1i |
|- ( ( ph /\ k e. ( M ... N ) ) -> 0 e. RR* ) |
| 17 |
|
pnfxr |
|- +oo e. RR* |
| 18 |
17
|
a1i |
|- ( ( ph /\ k e. ( M ... N ) ) -> +oo e. RR* ) |
| 19 |
|
iccssxr |
|- ( 0 [,] +oo ) C_ RR* |
| 20 |
|
simpl |
|- ( ( ph /\ k e. ( M ... N ) ) -> ph ) |
| 21 |
|
fzelp1 |
|- ( k e. ( M ... N ) -> k e. ( M ... ( N + 1 ) ) ) |
| 22 |
21
|
adantl |
|- ( ( ph /\ k e. ( M ... N ) ) -> k e. ( M ... ( N + 1 ) ) ) |
| 23 |
20 22 2
|
syl2anc |
|- ( ( ph /\ k e. ( M ... N ) ) -> A e. ( 0 [,] +oo ) ) |
| 24 |
19 23
|
sselid |
|- ( ( ph /\ k e. ( M ... N ) ) -> A e. RR* ) |
| 25 |
|
iccgelb |
|- ( ( 0 e. RR* /\ +oo e. RR* /\ A e. ( 0 [,] +oo ) ) -> 0 <_ A ) |
| 26 |
16 18 23 25
|
syl3anc |
|- ( ( ph /\ k e. ( M ... N ) ) -> 0 <_ A ) |
| 27 |
|
iccleub |
|- ( ( 0 e. RR* /\ +oo e. RR* /\ A e. ( 0 [,] +oo ) ) -> A <_ +oo ) |
| 28 |
16 18 23 27
|
syl3anc |
|- ( ( ph /\ k e. ( M ... N ) ) -> A <_ +oo ) |
| 29 |
16 18 24 26 28
|
eliccxrd |
|- ( ( ph /\ k e. ( M ... N ) ) -> A e. ( 0 [,] +oo ) ) |
| 30 |
|
simpl |
|- ( ( ph /\ k e. { ( N + 1 ) } ) -> ph ) |
| 31 |
|
elsni |
|- ( k e. { ( N + 1 ) } -> k = ( N + 1 ) ) |
| 32 |
31
|
adantl |
|- ( ( ph /\ k e. { ( N + 1 ) } ) -> k = ( N + 1 ) ) |
| 33 |
|
simpr |
|- ( ( ph /\ k = ( N + 1 ) ) -> k = ( N + 1 ) ) |
| 34 |
|
peano2uz |
|- ( N e. ( ZZ>= ` M ) -> ( N + 1 ) e. ( ZZ>= ` M ) ) |
| 35 |
|
eluzfz2 |
|- ( ( N + 1 ) e. ( ZZ>= ` M ) -> ( N + 1 ) e. ( M ... ( N + 1 ) ) ) |
| 36 |
1 34 35
|
3syl |
|- ( ph -> ( N + 1 ) e. ( M ... ( N + 1 ) ) ) |
| 37 |
36
|
adantr |
|- ( ( ph /\ k = ( N + 1 ) ) -> ( N + 1 ) e. ( M ... ( N + 1 ) ) ) |
| 38 |
33 37
|
eqeltrd |
|- ( ( ph /\ k = ( N + 1 ) ) -> k e. ( M ... ( N + 1 ) ) ) |
| 39 |
30 32 38
|
syl2anc |
|- ( ( ph /\ k e. { ( N + 1 ) } ) -> k e. ( M ... ( N + 1 ) ) ) |
| 40 |
30 39 2
|
syl2anc |
|- ( ( ph /\ k e. { ( N + 1 ) } ) -> A e. ( 0 [,] +oo ) ) |
| 41 |
8 10 12 14 29 40
|
sge0splitmpt |
|- ( ph -> ( sum^ ` ( k e. ( ( M ... N ) u. { ( N + 1 ) } ) |-> A ) ) = ( ( sum^ ` ( k e. ( M ... N ) |-> A ) ) +e ( sum^ ` ( k e. { ( N + 1 ) } |-> A ) ) ) ) |
| 42 |
|
ovex |
|- ( N + 1 ) e. _V |
| 43 |
42
|
a1i |
|- ( ph -> ( N + 1 ) e. _V ) |
| 44 |
|
id |
|- ( ph -> ph ) |
| 45 |
|
eleq1 |
|- ( k = ( N + 1 ) -> ( k e. ( M ... ( N + 1 ) ) <-> ( N + 1 ) e. ( M ... ( N + 1 ) ) ) ) |
| 46 |
45
|
anbi2d |
|- ( k = ( N + 1 ) -> ( ( ph /\ k e. ( M ... ( N + 1 ) ) ) <-> ( ph /\ ( N + 1 ) e. ( M ... ( N + 1 ) ) ) ) ) |
| 47 |
3
|
eleq1d |
|- ( k = ( N + 1 ) -> ( A e. ( 0 [,] +oo ) <-> B e. ( 0 [,] +oo ) ) ) |
| 48 |
46 47
|
imbi12d |
|- ( k = ( N + 1 ) -> ( ( ( ph /\ k e. ( M ... ( N + 1 ) ) ) -> A e. ( 0 [,] +oo ) ) <-> ( ( ph /\ ( N + 1 ) e. ( M ... ( N + 1 ) ) ) -> B e. ( 0 [,] +oo ) ) ) ) |
| 49 |
48 2
|
vtoclg |
|- ( ( N + 1 ) e. _V -> ( ( ph /\ ( N + 1 ) e. ( M ... ( N + 1 ) ) ) -> B e. ( 0 [,] +oo ) ) ) |
| 50 |
42 49
|
ax-mp |
|- ( ( ph /\ ( N + 1 ) e. ( M ... ( N + 1 ) ) ) -> B e. ( 0 [,] +oo ) ) |
| 51 |
44 36 50
|
syl2anc |
|- ( ph -> B e. ( 0 [,] +oo ) ) |
| 52 |
43 51 3
|
sge0snmpt |
|- ( ph -> ( sum^ ` ( k e. { ( N + 1 ) } |-> A ) ) = B ) |
| 53 |
52
|
oveq2d |
|- ( ph -> ( ( sum^ ` ( k e. ( M ... N ) |-> A ) ) +e ( sum^ ` ( k e. { ( N + 1 ) } |-> A ) ) ) = ( ( sum^ ` ( k e. ( M ... N ) |-> A ) ) +e B ) ) |
| 54 |
7 41 53
|
3eqtrd |
|- ( ph -> ( sum^ ` ( k e. ( M ... ( N + 1 ) ) |-> A ) ) = ( ( sum^ ` ( k e. ( M ... N ) |-> A ) ) +e B ) ) |