Step |
Hyp |
Ref |
Expression |
1 |
|
sge0p1.1 |
|- ( ph -> N e. ( ZZ>= ` M ) ) |
2 |
|
sge0p1.2 |
|- ( ( ph /\ k e. ( M ... ( N + 1 ) ) ) -> A e. ( 0 [,] +oo ) ) |
3 |
|
sge0p1.3 |
|- ( k = ( N + 1 ) -> A = B ) |
4 |
|
fzsuc |
|- ( N e. ( ZZ>= ` M ) -> ( M ... ( N + 1 ) ) = ( ( M ... N ) u. { ( N + 1 ) } ) ) |
5 |
1 4
|
syl |
|- ( ph -> ( M ... ( N + 1 ) ) = ( ( M ... N ) u. { ( N + 1 ) } ) ) |
6 |
5
|
mpteq1d |
|- ( ph -> ( k e. ( M ... ( N + 1 ) ) |-> A ) = ( k e. ( ( M ... N ) u. { ( N + 1 ) } ) |-> A ) ) |
7 |
6
|
fveq2d |
|- ( ph -> ( sum^ ` ( k e. ( M ... ( N + 1 ) ) |-> A ) ) = ( sum^ ` ( k e. ( ( M ... N ) u. { ( N + 1 ) } ) |-> A ) ) ) |
8 |
|
nfv |
|- F/ k ph |
9 |
|
ovex |
|- ( M ... N ) e. _V |
10 |
9
|
a1i |
|- ( ph -> ( M ... N ) e. _V ) |
11 |
|
snex |
|- { ( N + 1 ) } e. _V |
12 |
11
|
a1i |
|- ( ph -> { ( N + 1 ) } e. _V ) |
13 |
|
fzp1disj |
|- ( ( M ... N ) i^i { ( N + 1 ) } ) = (/) |
14 |
13
|
a1i |
|- ( ph -> ( ( M ... N ) i^i { ( N + 1 ) } ) = (/) ) |
15 |
|
0xr |
|- 0 e. RR* |
16 |
15
|
a1i |
|- ( ( ph /\ k e. ( M ... N ) ) -> 0 e. RR* ) |
17 |
|
pnfxr |
|- +oo e. RR* |
18 |
17
|
a1i |
|- ( ( ph /\ k e. ( M ... N ) ) -> +oo e. RR* ) |
19 |
|
iccssxr |
|- ( 0 [,] +oo ) C_ RR* |
20 |
|
simpl |
|- ( ( ph /\ k e. ( M ... N ) ) -> ph ) |
21 |
|
fzelp1 |
|- ( k e. ( M ... N ) -> k e. ( M ... ( N + 1 ) ) ) |
22 |
21
|
adantl |
|- ( ( ph /\ k e. ( M ... N ) ) -> k e. ( M ... ( N + 1 ) ) ) |
23 |
20 22 2
|
syl2anc |
|- ( ( ph /\ k e. ( M ... N ) ) -> A e. ( 0 [,] +oo ) ) |
24 |
19 23
|
sselid |
|- ( ( ph /\ k e. ( M ... N ) ) -> A e. RR* ) |
25 |
|
iccgelb |
|- ( ( 0 e. RR* /\ +oo e. RR* /\ A e. ( 0 [,] +oo ) ) -> 0 <_ A ) |
26 |
16 18 23 25
|
syl3anc |
|- ( ( ph /\ k e. ( M ... N ) ) -> 0 <_ A ) |
27 |
|
iccleub |
|- ( ( 0 e. RR* /\ +oo e. RR* /\ A e. ( 0 [,] +oo ) ) -> A <_ +oo ) |
28 |
16 18 23 27
|
syl3anc |
|- ( ( ph /\ k e. ( M ... N ) ) -> A <_ +oo ) |
29 |
16 18 24 26 28
|
eliccxrd |
|- ( ( ph /\ k e. ( M ... N ) ) -> A e. ( 0 [,] +oo ) ) |
30 |
|
simpl |
|- ( ( ph /\ k e. { ( N + 1 ) } ) -> ph ) |
31 |
|
elsni |
|- ( k e. { ( N + 1 ) } -> k = ( N + 1 ) ) |
32 |
31
|
adantl |
|- ( ( ph /\ k e. { ( N + 1 ) } ) -> k = ( N + 1 ) ) |
33 |
|
simpr |
|- ( ( ph /\ k = ( N + 1 ) ) -> k = ( N + 1 ) ) |
34 |
|
peano2uz |
|- ( N e. ( ZZ>= ` M ) -> ( N + 1 ) e. ( ZZ>= ` M ) ) |
35 |
|
eluzfz2 |
|- ( ( N + 1 ) e. ( ZZ>= ` M ) -> ( N + 1 ) e. ( M ... ( N + 1 ) ) ) |
36 |
1 34 35
|
3syl |
|- ( ph -> ( N + 1 ) e. ( M ... ( N + 1 ) ) ) |
37 |
36
|
adantr |
|- ( ( ph /\ k = ( N + 1 ) ) -> ( N + 1 ) e. ( M ... ( N + 1 ) ) ) |
38 |
33 37
|
eqeltrd |
|- ( ( ph /\ k = ( N + 1 ) ) -> k e. ( M ... ( N + 1 ) ) ) |
39 |
30 32 38
|
syl2anc |
|- ( ( ph /\ k e. { ( N + 1 ) } ) -> k e. ( M ... ( N + 1 ) ) ) |
40 |
30 39 2
|
syl2anc |
|- ( ( ph /\ k e. { ( N + 1 ) } ) -> A e. ( 0 [,] +oo ) ) |
41 |
8 10 12 14 29 40
|
sge0splitmpt |
|- ( ph -> ( sum^ ` ( k e. ( ( M ... N ) u. { ( N + 1 ) } ) |-> A ) ) = ( ( sum^ ` ( k e. ( M ... N ) |-> A ) ) +e ( sum^ ` ( k e. { ( N + 1 ) } |-> A ) ) ) ) |
42 |
|
ovex |
|- ( N + 1 ) e. _V |
43 |
42
|
a1i |
|- ( ph -> ( N + 1 ) e. _V ) |
44 |
|
id |
|- ( ph -> ph ) |
45 |
|
eleq1 |
|- ( k = ( N + 1 ) -> ( k e. ( M ... ( N + 1 ) ) <-> ( N + 1 ) e. ( M ... ( N + 1 ) ) ) ) |
46 |
45
|
anbi2d |
|- ( k = ( N + 1 ) -> ( ( ph /\ k e. ( M ... ( N + 1 ) ) ) <-> ( ph /\ ( N + 1 ) e. ( M ... ( N + 1 ) ) ) ) ) |
47 |
3
|
eleq1d |
|- ( k = ( N + 1 ) -> ( A e. ( 0 [,] +oo ) <-> B e. ( 0 [,] +oo ) ) ) |
48 |
46 47
|
imbi12d |
|- ( k = ( N + 1 ) -> ( ( ( ph /\ k e. ( M ... ( N + 1 ) ) ) -> A e. ( 0 [,] +oo ) ) <-> ( ( ph /\ ( N + 1 ) e. ( M ... ( N + 1 ) ) ) -> B e. ( 0 [,] +oo ) ) ) ) |
49 |
48 2
|
vtoclg |
|- ( ( N + 1 ) e. _V -> ( ( ph /\ ( N + 1 ) e. ( M ... ( N + 1 ) ) ) -> B e. ( 0 [,] +oo ) ) ) |
50 |
42 49
|
ax-mp |
|- ( ( ph /\ ( N + 1 ) e. ( M ... ( N + 1 ) ) ) -> B e. ( 0 [,] +oo ) ) |
51 |
44 36 50
|
syl2anc |
|- ( ph -> B e. ( 0 [,] +oo ) ) |
52 |
43 51 3
|
sge0snmpt |
|- ( ph -> ( sum^ ` ( k e. { ( N + 1 ) } |-> A ) ) = B ) |
53 |
52
|
oveq2d |
|- ( ph -> ( ( sum^ ` ( k e. ( M ... N ) |-> A ) ) +e ( sum^ ` ( k e. { ( N + 1 ) } |-> A ) ) ) = ( ( sum^ ` ( k e. ( M ... N ) |-> A ) ) +e B ) ) |
54 |
7 41 53
|
3eqtrd |
|- ( ph -> ( sum^ ` ( k e. ( M ... ( N + 1 ) ) |-> A ) ) = ( ( sum^ ` ( k e. ( M ... N ) |-> A ) ) +e B ) ) |