Step |
Hyp |
Ref |
Expression |
1 |
|
sge0ss.kph |
|- F/ k ph |
2 |
|
sge0ss.b |
|- ( ph -> B e. V ) |
3 |
|
sge0ss.a |
|- ( ph -> A C_ B ) |
4 |
|
sge0ss.c |
|- ( ( ph /\ k e. A ) -> C e. ( 0 [,] +oo ) ) |
5 |
|
sge0ss.c0 |
|- ( ( ph /\ k e. ( B \ A ) ) -> C = 0 ) |
6 |
|
ssexg |
|- ( ( A C_ B /\ B e. V ) -> A e. _V ) |
7 |
3 2 6
|
syl2anc |
|- ( ph -> A e. _V ) |
8 |
2
|
difexd |
|- ( ph -> ( B \ A ) e. _V ) |
9 |
|
disjdif |
|- ( A i^i ( B \ A ) ) = (/) |
10 |
9
|
a1i |
|- ( ph -> ( A i^i ( B \ A ) ) = (/) ) |
11 |
|
0e0iccpnf |
|- 0 e. ( 0 [,] +oo ) |
12 |
11
|
a1i |
|- ( ( ph /\ k e. ( B \ A ) ) -> 0 e. ( 0 [,] +oo ) ) |
13 |
5 12
|
eqeltrd |
|- ( ( ph /\ k e. ( B \ A ) ) -> C e. ( 0 [,] +oo ) ) |
14 |
1 7 8 10 4 13
|
sge0splitmpt |
|- ( ph -> ( sum^ ` ( k e. ( A u. ( B \ A ) ) |-> C ) ) = ( ( sum^ ` ( k e. A |-> C ) ) +e ( sum^ ` ( k e. ( B \ A ) |-> C ) ) ) ) |
15 |
14
|
eqcomd |
|- ( ph -> ( ( sum^ ` ( k e. A |-> C ) ) +e ( sum^ ` ( k e. ( B \ A ) |-> C ) ) ) = ( sum^ ` ( k e. ( A u. ( B \ A ) ) |-> C ) ) ) |
16 |
1 5
|
mpteq2da |
|- ( ph -> ( k e. ( B \ A ) |-> C ) = ( k e. ( B \ A ) |-> 0 ) ) |
17 |
16
|
fveq2d |
|- ( ph -> ( sum^ ` ( k e. ( B \ A ) |-> C ) ) = ( sum^ ` ( k e. ( B \ A ) |-> 0 ) ) ) |
18 |
1 8
|
sge0z |
|- ( ph -> ( sum^ ` ( k e. ( B \ A ) |-> 0 ) ) = 0 ) |
19 |
17 18
|
eqtrd |
|- ( ph -> ( sum^ ` ( k e. ( B \ A ) |-> C ) ) = 0 ) |
20 |
19
|
oveq2d |
|- ( ph -> ( ( sum^ ` ( k e. A |-> C ) ) +e ( sum^ ` ( k e. ( B \ A ) |-> C ) ) ) = ( ( sum^ ` ( k e. A |-> C ) ) +e 0 ) ) |
21 |
|
eqid |
|- ( k e. A |-> C ) = ( k e. A |-> C ) |
22 |
1 4 21
|
fmptdf |
|- ( ph -> ( k e. A |-> C ) : A --> ( 0 [,] +oo ) ) |
23 |
7 22
|
sge0xrcl |
|- ( ph -> ( sum^ ` ( k e. A |-> C ) ) e. RR* ) |
24 |
|
xaddid1 |
|- ( ( sum^ ` ( k e. A |-> C ) ) e. RR* -> ( ( sum^ ` ( k e. A |-> C ) ) +e 0 ) = ( sum^ ` ( k e. A |-> C ) ) ) |
25 |
23 24
|
syl |
|- ( ph -> ( ( sum^ ` ( k e. A |-> C ) ) +e 0 ) = ( sum^ ` ( k e. A |-> C ) ) ) |
26 |
|
eqidd |
|- ( ph -> ( sum^ ` ( k e. A |-> C ) ) = ( sum^ ` ( k e. A |-> C ) ) ) |
27 |
20 25 26
|
3eqtrrd |
|- ( ph -> ( sum^ ` ( k e. A |-> C ) ) = ( ( sum^ ` ( k e. A |-> C ) ) +e ( sum^ ` ( k e. ( B \ A ) |-> C ) ) ) ) |
28 |
|
undif |
|- ( A C_ B <-> ( A u. ( B \ A ) ) = B ) |
29 |
3 28
|
sylib |
|- ( ph -> ( A u. ( B \ A ) ) = B ) |
30 |
29
|
eqcomd |
|- ( ph -> B = ( A u. ( B \ A ) ) ) |
31 |
30
|
mpteq1d |
|- ( ph -> ( k e. B |-> C ) = ( k e. ( A u. ( B \ A ) ) |-> C ) ) |
32 |
31
|
fveq2d |
|- ( ph -> ( sum^ ` ( k e. B |-> C ) ) = ( sum^ ` ( k e. ( A u. ( B \ A ) ) |-> C ) ) ) |
33 |
15 27 32
|
3eqtr4d |
|- ( ph -> ( sum^ ` ( k e. A |-> C ) ) = ( sum^ ` ( k e. B |-> C ) ) ) |