| Step |
Hyp |
Ref |
Expression |
| 1 |
|
disjf1o.xph |
⊢ Ⅎ 𝑥 𝜑 |
| 2 |
|
disjf1o.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
| 3 |
|
disjf1o.b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) |
| 4 |
|
disjf1o.dj |
⊢ ( 𝜑 → Disj 𝑥 ∈ 𝐴 𝐵 ) |
| 5 |
|
disjf1o.d |
⊢ 𝐶 = { 𝑥 ∈ 𝐴 ∣ 𝐵 ≠ ∅ } |
| 6 |
|
disjf1o.e |
⊢ 𝐷 = ( ran 𝐹 ∖ { ∅ } ) |
| 7 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐶 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐶 ↦ 𝐵 ) |
| 8 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 𝜑 ) |
| 9 |
|
ssrab2 |
⊢ { 𝑥 ∈ 𝐴 ∣ 𝐵 ≠ ∅ } ⊆ 𝐴 |
| 10 |
5 9
|
eqsstri |
⊢ 𝐶 ⊆ 𝐴 |
| 11 |
|
id |
⊢ ( 𝑥 ∈ 𝐶 → 𝑥 ∈ 𝐶 ) |
| 12 |
10 11
|
sselid |
⊢ ( 𝑥 ∈ 𝐶 → 𝑥 ∈ 𝐴 ) |
| 13 |
12
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 𝑥 ∈ 𝐴 ) |
| 14 |
8 13 3
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 𝐵 ∈ 𝑉 ) |
| 15 |
11 5
|
eleqtrdi |
⊢ ( 𝑥 ∈ 𝐶 → 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 ≠ ∅ } ) |
| 16 |
|
rabid |
⊢ ( 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 ≠ ∅ } ↔ ( 𝑥 ∈ 𝐴 ∧ 𝐵 ≠ ∅ ) ) |
| 17 |
16
|
a1i |
⊢ ( 𝑥 ∈ 𝐶 → ( 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 ≠ ∅ } ↔ ( 𝑥 ∈ 𝐴 ∧ 𝐵 ≠ ∅ ) ) ) |
| 18 |
15 17
|
mpbid |
⊢ ( 𝑥 ∈ 𝐶 → ( 𝑥 ∈ 𝐴 ∧ 𝐵 ≠ ∅ ) ) |
| 19 |
18
|
simprd |
⊢ ( 𝑥 ∈ 𝐶 → 𝐵 ≠ ∅ ) |
| 20 |
19
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 𝐵 ≠ ∅ ) |
| 21 |
10
|
a1i |
⊢ ( 𝜑 → 𝐶 ⊆ 𝐴 ) |
| 22 |
|
disjss1 |
⊢ ( 𝐶 ⊆ 𝐴 → ( Disj 𝑥 ∈ 𝐴 𝐵 → Disj 𝑥 ∈ 𝐶 𝐵 ) ) |
| 23 |
21 4 22
|
sylc |
⊢ ( 𝜑 → Disj 𝑥 ∈ 𝐶 𝐵 ) |
| 24 |
1 7 14 20 23
|
disjf1 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐶 ↦ 𝐵 ) : 𝐶 –1-1→ 𝑉 ) |
| 25 |
|
f1f1orn |
⊢ ( ( 𝑥 ∈ 𝐶 ↦ 𝐵 ) : 𝐶 –1-1→ 𝑉 → ( 𝑥 ∈ 𝐶 ↦ 𝐵 ) : 𝐶 –1-1-onto→ ran ( 𝑥 ∈ 𝐶 ↦ 𝐵 ) ) |
| 26 |
24 25
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐶 ↦ 𝐵 ) : 𝐶 –1-1-onto→ ran ( 𝑥 ∈ 𝐶 ↦ 𝐵 ) ) |
| 27 |
2
|
a1i |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
| 28 |
27
|
reseq1d |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝐶 ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↾ 𝐶 ) ) |
| 29 |
21
|
resmptd |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↾ 𝐶 ) = ( 𝑥 ∈ 𝐶 ↦ 𝐵 ) ) |
| 30 |
28 29
|
eqtrd |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝐶 ) = ( 𝑥 ∈ 𝐶 ↦ 𝐵 ) ) |
| 31 |
|
eqidd |
⊢ ( 𝜑 → 𝐶 = 𝐶 ) |
| 32 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → 𝜑 ) |
| 33 |
|
id |
⊢ ( 𝑦 ∈ 𝐷 → 𝑦 ∈ 𝐷 ) |
| 34 |
33 6
|
eleqtrdi |
⊢ ( 𝑦 ∈ 𝐷 → 𝑦 ∈ ( ran 𝐹 ∖ { ∅ } ) ) |
| 35 |
|
eldifsni |
⊢ ( 𝑦 ∈ ( ran 𝐹 ∖ { ∅ } ) → 𝑦 ≠ ∅ ) |
| 36 |
34 35
|
syl |
⊢ ( 𝑦 ∈ 𝐷 → 𝑦 ≠ ∅ ) |
| 37 |
36
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → 𝑦 ≠ ∅ ) |
| 38 |
|
eldifi |
⊢ ( 𝑦 ∈ ( ran 𝐹 ∖ { ∅ } ) → 𝑦 ∈ ran 𝐹 ) |
| 39 |
34 38
|
syl |
⊢ ( 𝑦 ∈ 𝐷 → 𝑦 ∈ ran 𝐹 ) |
| 40 |
2
|
elrnmpt |
⊢ ( 𝑦 ∈ ran 𝐹 → ( 𝑦 ∈ ran 𝐹 ↔ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 ) ) |
| 41 |
39 40
|
syl |
⊢ ( 𝑦 ∈ 𝐷 → ( 𝑦 ∈ ran 𝐹 ↔ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 ) ) |
| 42 |
39 41
|
mpbid |
⊢ ( 𝑦 ∈ 𝐷 → ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 ) |
| 43 |
42
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 ) |
| 44 |
|
nfv |
⊢ Ⅎ 𝑥 𝑦 ≠ ∅ |
| 45 |
1 44
|
nfan |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ 𝑦 ≠ ∅ ) |
| 46 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑦 |
| 47 |
|
nfmpt1 |
⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝐶 ↦ 𝐵 ) |
| 48 |
47
|
nfrn |
⊢ Ⅎ 𝑥 ran ( 𝑥 ∈ 𝐶 ↦ 𝐵 ) |
| 49 |
46 48
|
nfel |
⊢ Ⅎ 𝑥 𝑦 ∈ ran ( 𝑥 ∈ 𝐶 ↦ 𝐵 ) |
| 50 |
|
simp3 |
⊢ ( ( 𝑦 ≠ ∅ ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) → 𝑦 = 𝐵 ) |
| 51 |
|
simp2 |
⊢ ( ( 𝑦 ≠ ∅ ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) → 𝑥 ∈ 𝐴 ) |
| 52 |
|
id |
⊢ ( 𝑦 = 𝐵 → 𝑦 = 𝐵 ) |
| 53 |
52
|
eqcomd |
⊢ ( 𝑦 = 𝐵 → 𝐵 = 𝑦 ) |
| 54 |
53
|
adantl |
⊢ ( ( 𝑦 ≠ ∅ ∧ 𝑦 = 𝐵 ) → 𝐵 = 𝑦 ) |
| 55 |
|
simpl |
⊢ ( ( 𝑦 ≠ ∅ ∧ 𝑦 = 𝐵 ) → 𝑦 ≠ ∅ ) |
| 56 |
54 55
|
eqnetrd |
⊢ ( ( 𝑦 ≠ ∅ ∧ 𝑦 = 𝐵 ) → 𝐵 ≠ ∅ ) |
| 57 |
56
|
3adant2 |
⊢ ( ( 𝑦 ≠ ∅ ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) → 𝐵 ≠ ∅ ) |
| 58 |
51 57
|
jca |
⊢ ( ( 𝑦 ≠ ∅ ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝑥 ∈ 𝐴 ∧ 𝐵 ≠ ∅ ) ) |
| 59 |
58 16
|
sylibr |
⊢ ( ( 𝑦 ≠ ∅ ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) → 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 ≠ ∅ } ) |
| 60 |
5
|
eqcomi |
⊢ { 𝑥 ∈ 𝐴 ∣ 𝐵 ≠ ∅ } = 𝐶 |
| 61 |
60
|
a1i |
⊢ ( ( 𝑦 ≠ ∅ ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) → { 𝑥 ∈ 𝐴 ∣ 𝐵 ≠ ∅ } = 𝐶 ) |
| 62 |
59 61
|
eleqtrd |
⊢ ( ( 𝑦 ≠ ∅ ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) → 𝑥 ∈ 𝐶 ) |
| 63 |
|
eqvisset |
⊢ ( 𝑦 = 𝐵 → 𝐵 ∈ V ) |
| 64 |
63
|
3ad2ant3 |
⊢ ( ( 𝑦 ≠ ∅ ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) → 𝐵 ∈ V ) |
| 65 |
7
|
elrnmpt1 |
⊢ ( ( 𝑥 ∈ 𝐶 ∧ 𝐵 ∈ V ) → 𝐵 ∈ ran ( 𝑥 ∈ 𝐶 ↦ 𝐵 ) ) |
| 66 |
62 64 65
|
syl2anc |
⊢ ( ( 𝑦 ≠ ∅ ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) → 𝐵 ∈ ran ( 𝑥 ∈ 𝐶 ↦ 𝐵 ) ) |
| 67 |
50 66
|
eqeltrd |
⊢ ( ( 𝑦 ≠ ∅ ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) → 𝑦 ∈ ran ( 𝑥 ∈ 𝐶 ↦ 𝐵 ) ) |
| 68 |
67
|
3adant1l |
⊢ ( ( ( 𝜑 ∧ 𝑦 ≠ ∅ ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) → 𝑦 ∈ ran ( 𝑥 ∈ 𝐶 ↦ 𝐵 ) ) |
| 69 |
68
|
3exp |
⊢ ( ( 𝜑 ∧ 𝑦 ≠ ∅ ) → ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐵 → 𝑦 ∈ ran ( 𝑥 ∈ 𝐶 ↦ 𝐵 ) ) ) ) |
| 70 |
45 49 69
|
rexlimd |
⊢ ( ( 𝜑 ∧ 𝑦 ≠ ∅ ) → ( ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 → 𝑦 ∈ ran ( 𝑥 ∈ 𝐶 ↦ 𝐵 ) ) ) |
| 71 |
70
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝑦 ≠ ∅ ) ∧ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 ) → 𝑦 ∈ ran ( 𝑥 ∈ 𝐶 ↦ 𝐵 ) ) |
| 72 |
32 37 43 71
|
syl21anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → 𝑦 ∈ ran ( 𝑥 ∈ 𝐶 ↦ 𝐵 ) ) |
| 73 |
72
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝐷 𝑦 ∈ ran ( 𝑥 ∈ 𝐶 ↦ 𝐵 ) ) |
| 74 |
|
dfss3 |
⊢ ( 𝐷 ⊆ ran ( 𝑥 ∈ 𝐶 ↦ 𝐵 ) ↔ ∀ 𝑦 ∈ 𝐷 𝑦 ∈ ran ( 𝑥 ∈ 𝐶 ↦ 𝐵 ) ) |
| 75 |
73 74
|
sylibr |
⊢ ( 𝜑 → 𝐷 ⊆ ran ( 𝑥 ∈ 𝐶 ↦ 𝐵 ) ) |
| 76 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ran ( 𝑥 ∈ 𝐶 ↦ 𝐵 ) ) → 𝜑 ) |
| 77 |
|
vex |
⊢ 𝑦 ∈ V |
| 78 |
7
|
elrnmpt |
⊢ ( 𝑦 ∈ V → ( 𝑦 ∈ ran ( 𝑥 ∈ 𝐶 ↦ 𝐵 ) ↔ ∃ 𝑥 ∈ 𝐶 𝑦 = 𝐵 ) ) |
| 79 |
77 78
|
ax-mp |
⊢ ( 𝑦 ∈ ran ( 𝑥 ∈ 𝐶 ↦ 𝐵 ) ↔ ∃ 𝑥 ∈ 𝐶 𝑦 = 𝐵 ) |
| 80 |
79
|
biimpi |
⊢ ( 𝑦 ∈ ran ( 𝑥 ∈ 𝐶 ↦ 𝐵 ) → ∃ 𝑥 ∈ 𝐶 𝑦 = 𝐵 ) |
| 81 |
80
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ran ( 𝑥 ∈ 𝐶 ↦ 𝐵 ) ) → ∃ 𝑥 ∈ 𝐶 𝑦 = 𝐵 ) |
| 82 |
|
nfv |
⊢ Ⅎ 𝑥 𝑦 ∈ 𝐷 |
| 83 |
|
simpr |
⊢ ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐵 ) → 𝑦 = 𝐵 ) |
| 84 |
12
|
adantr |
⊢ ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐵 ) → 𝑥 ∈ 𝐴 ) |
| 85 |
83 63
|
syl |
⊢ ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐵 ) → 𝐵 ∈ V ) |
| 86 |
2
|
elrnmpt1 |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ V ) → 𝐵 ∈ ran 𝐹 ) |
| 87 |
84 85 86
|
syl2anc |
⊢ ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐵 ) → 𝐵 ∈ ran 𝐹 ) |
| 88 |
83 87
|
eqeltrd |
⊢ ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐵 ) → 𝑦 ∈ ran 𝐹 ) |
| 89 |
88
|
3adant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐵 ) → 𝑦 ∈ ran 𝐹 ) |
| 90 |
19
|
adantr |
⊢ ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐵 ) → 𝐵 ≠ ∅ ) |
| 91 |
83 90
|
eqnetrd |
⊢ ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐵 ) → 𝑦 ≠ ∅ ) |
| 92 |
|
nelsn |
⊢ ( 𝑦 ≠ ∅ → ¬ 𝑦 ∈ { ∅ } ) |
| 93 |
91 92
|
syl |
⊢ ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐵 ) → ¬ 𝑦 ∈ { ∅ } ) |
| 94 |
93
|
3adant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐵 ) → ¬ 𝑦 ∈ { ∅ } ) |
| 95 |
89 94
|
eldifd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐵 ) → 𝑦 ∈ ( ran 𝐹 ∖ { ∅ } ) ) |
| 96 |
95 6
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐵 ) → 𝑦 ∈ 𝐷 ) |
| 97 |
96
|
3exp |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐶 → ( 𝑦 = 𝐵 → 𝑦 ∈ 𝐷 ) ) ) |
| 98 |
1 82 97
|
rexlimd |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐶 𝑦 = 𝐵 → 𝑦 ∈ 𝐷 ) ) |
| 99 |
98
|
imp |
⊢ ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝐶 𝑦 = 𝐵 ) → 𝑦 ∈ 𝐷 ) |
| 100 |
76 81 99
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ran ( 𝑥 ∈ 𝐶 ↦ 𝐵 ) ) → 𝑦 ∈ 𝐷 ) |
| 101 |
75 100
|
eqelssd |
⊢ ( 𝜑 → 𝐷 = ran ( 𝑥 ∈ 𝐶 ↦ 𝐵 ) ) |
| 102 |
30 31 101
|
f1oeq123d |
⊢ ( 𝜑 → ( ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1-onto→ 𝐷 ↔ ( 𝑥 ∈ 𝐶 ↦ 𝐵 ) : 𝐶 –1-1-onto→ ran ( 𝑥 ∈ 𝐶 ↦ 𝐵 ) ) ) |
| 103 |
26 102
|
mpbird |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1-onto→ 𝐷 ) |