| Step |
Hyp |
Ref |
Expression |
| 1 |
|
disjf1o.xph |
|- F/ x ph |
| 2 |
|
disjf1o.f |
|- F = ( x e. A |-> B ) |
| 3 |
|
disjf1o.b |
|- ( ( ph /\ x e. A ) -> B e. V ) |
| 4 |
|
disjf1o.dj |
|- ( ph -> Disj_ x e. A B ) |
| 5 |
|
disjf1o.d |
|- C = { x e. A | B =/= (/) } |
| 6 |
|
disjf1o.e |
|- D = ( ran F \ { (/) } ) |
| 7 |
|
eqid |
|- ( x e. C |-> B ) = ( x e. C |-> B ) |
| 8 |
|
simpl |
|- ( ( ph /\ x e. C ) -> ph ) |
| 9 |
|
ssrab2 |
|- { x e. A | B =/= (/) } C_ A |
| 10 |
5 9
|
eqsstri |
|- C C_ A |
| 11 |
|
id |
|- ( x e. C -> x e. C ) |
| 12 |
10 11
|
sselid |
|- ( x e. C -> x e. A ) |
| 13 |
12
|
adantl |
|- ( ( ph /\ x e. C ) -> x e. A ) |
| 14 |
8 13 3
|
syl2anc |
|- ( ( ph /\ x e. C ) -> B e. V ) |
| 15 |
11 5
|
eleqtrdi |
|- ( x e. C -> x e. { x e. A | B =/= (/) } ) |
| 16 |
|
rabid |
|- ( x e. { x e. A | B =/= (/) } <-> ( x e. A /\ B =/= (/) ) ) |
| 17 |
16
|
a1i |
|- ( x e. C -> ( x e. { x e. A | B =/= (/) } <-> ( x e. A /\ B =/= (/) ) ) ) |
| 18 |
15 17
|
mpbid |
|- ( x e. C -> ( x e. A /\ B =/= (/) ) ) |
| 19 |
18
|
simprd |
|- ( x e. C -> B =/= (/) ) |
| 20 |
19
|
adantl |
|- ( ( ph /\ x e. C ) -> B =/= (/) ) |
| 21 |
10
|
a1i |
|- ( ph -> C C_ A ) |
| 22 |
|
disjss1 |
|- ( C C_ A -> ( Disj_ x e. A B -> Disj_ x e. C B ) ) |
| 23 |
21 4 22
|
sylc |
|- ( ph -> Disj_ x e. C B ) |
| 24 |
1 7 14 20 23
|
disjf1 |
|- ( ph -> ( x e. C |-> B ) : C -1-1-> V ) |
| 25 |
|
f1f1orn |
|- ( ( x e. C |-> B ) : C -1-1-> V -> ( x e. C |-> B ) : C -1-1-onto-> ran ( x e. C |-> B ) ) |
| 26 |
24 25
|
syl |
|- ( ph -> ( x e. C |-> B ) : C -1-1-onto-> ran ( x e. C |-> B ) ) |
| 27 |
2
|
a1i |
|- ( ph -> F = ( x e. A |-> B ) ) |
| 28 |
27
|
reseq1d |
|- ( ph -> ( F |` C ) = ( ( x e. A |-> B ) |` C ) ) |
| 29 |
21
|
resmptd |
|- ( ph -> ( ( x e. A |-> B ) |` C ) = ( x e. C |-> B ) ) |
| 30 |
28 29
|
eqtrd |
|- ( ph -> ( F |` C ) = ( x e. C |-> B ) ) |
| 31 |
|
eqidd |
|- ( ph -> C = C ) |
| 32 |
|
simpl |
|- ( ( ph /\ y e. D ) -> ph ) |
| 33 |
|
id |
|- ( y e. D -> y e. D ) |
| 34 |
33 6
|
eleqtrdi |
|- ( y e. D -> y e. ( ran F \ { (/) } ) ) |
| 35 |
|
eldifsni |
|- ( y e. ( ran F \ { (/) } ) -> y =/= (/) ) |
| 36 |
34 35
|
syl |
|- ( y e. D -> y =/= (/) ) |
| 37 |
36
|
adantl |
|- ( ( ph /\ y e. D ) -> y =/= (/) ) |
| 38 |
|
eldifi |
|- ( y e. ( ran F \ { (/) } ) -> y e. ran F ) |
| 39 |
34 38
|
syl |
|- ( y e. D -> y e. ran F ) |
| 40 |
2
|
elrnmpt |
|- ( y e. ran F -> ( y e. ran F <-> E. x e. A y = B ) ) |
| 41 |
39 40
|
syl |
|- ( y e. D -> ( y e. ran F <-> E. x e. A y = B ) ) |
| 42 |
39 41
|
mpbid |
|- ( y e. D -> E. x e. A y = B ) |
| 43 |
42
|
adantl |
|- ( ( ph /\ y e. D ) -> E. x e. A y = B ) |
| 44 |
|
nfv |
|- F/ x y =/= (/) |
| 45 |
1 44
|
nfan |
|- F/ x ( ph /\ y =/= (/) ) |
| 46 |
|
nfcv |
|- F/_ x y |
| 47 |
|
nfmpt1 |
|- F/_ x ( x e. C |-> B ) |
| 48 |
47
|
nfrn |
|- F/_ x ran ( x e. C |-> B ) |
| 49 |
46 48
|
nfel |
|- F/ x y e. ran ( x e. C |-> B ) |
| 50 |
|
simp3 |
|- ( ( y =/= (/) /\ x e. A /\ y = B ) -> y = B ) |
| 51 |
|
simp2 |
|- ( ( y =/= (/) /\ x e. A /\ y = B ) -> x e. A ) |
| 52 |
|
id |
|- ( y = B -> y = B ) |
| 53 |
52
|
eqcomd |
|- ( y = B -> B = y ) |
| 54 |
53
|
adantl |
|- ( ( y =/= (/) /\ y = B ) -> B = y ) |
| 55 |
|
simpl |
|- ( ( y =/= (/) /\ y = B ) -> y =/= (/) ) |
| 56 |
54 55
|
eqnetrd |
|- ( ( y =/= (/) /\ y = B ) -> B =/= (/) ) |
| 57 |
56
|
3adant2 |
|- ( ( y =/= (/) /\ x e. A /\ y = B ) -> B =/= (/) ) |
| 58 |
51 57
|
jca |
|- ( ( y =/= (/) /\ x e. A /\ y = B ) -> ( x e. A /\ B =/= (/) ) ) |
| 59 |
58 16
|
sylibr |
|- ( ( y =/= (/) /\ x e. A /\ y = B ) -> x e. { x e. A | B =/= (/) } ) |
| 60 |
5
|
eqcomi |
|- { x e. A | B =/= (/) } = C |
| 61 |
60
|
a1i |
|- ( ( y =/= (/) /\ x e. A /\ y = B ) -> { x e. A | B =/= (/) } = C ) |
| 62 |
59 61
|
eleqtrd |
|- ( ( y =/= (/) /\ x e. A /\ y = B ) -> x e. C ) |
| 63 |
|
eqvisset |
|- ( y = B -> B e. _V ) |
| 64 |
63
|
3ad2ant3 |
|- ( ( y =/= (/) /\ x e. A /\ y = B ) -> B e. _V ) |
| 65 |
7
|
elrnmpt1 |
|- ( ( x e. C /\ B e. _V ) -> B e. ran ( x e. C |-> B ) ) |
| 66 |
62 64 65
|
syl2anc |
|- ( ( y =/= (/) /\ x e. A /\ y = B ) -> B e. ran ( x e. C |-> B ) ) |
| 67 |
50 66
|
eqeltrd |
|- ( ( y =/= (/) /\ x e. A /\ y = B ) -> y e. ran ( x e. C |-> B ) ) |
| 68 |
67
|
3adant1l |
|- ( ( ( ph /\ y =/= (/) ) /\ x e. A /\ y = B ) -> y e. ran ( x e. C |-> B ) ) |
| 69 |
68
|
3exp |
|- ( ( ph /\ y =/= (/) ) -> ( x e. A -> ( y = B -> y e. ran ( x e. C |-> B ) ) ) ) |
| 70 |
45 49 69
|
rexlimd |
|- ( ( ph /\ y =/= (/) ) -> ( E. x e. A y = B -> y e. ran ( x e. C |-> B ) ) ) |
| 71 |
70
|
imp |
|- ( ( ( ph /\ y =/= (/) ) /\ E. x e. A y = B ) -> y e. ran ( x e. C |-> B ) ) |
| 72 |
32 37 43 71
|
syl21anc |
|- ( ( ph /\ y e. D ) -> y e. ran ( x e. C |-> B ) ) |
| 73 |
72
|
ralrimiva |
|- ( ph -> A. y e. D y e. ran ( x e. C |-> B ) ) |
| 74 |
|
dfss3 |
|- ( D C_ ran ( x e. C |-> B ) <-> A. y e. D y e. ran ( x e. C |-> B ) ) |
| 75 |
73 74
|
sylibr |
|- ( ph -> D C_ ran ( x e. C |-> B ) ) |
| 76 |
|
simpl |
|- ( ( ph /\ y e. ran ( x e. C |-> B ) ) -> ph ) |
| 77 |
|
vex |
|- y e. _V |
| 78 |
7
|
elrnmpt |
|- ( y e. _V -> ( y e. ran ( x e. C |-> B ) <-> E. x e. C y = B ) ) |
| 79 |
77 78
|
ax-mp |
|- ( y e. ran ( x e. C |-> B ) <-> E. x e. C y = B ) |
| 80 |
79
|
biimpi |
|- ( y e. ran ( x e. C |-> B ) -> E. x e. C y = B ) |
| 81 |
80
|
adantl |
|- ( ( ph /\ y e. ran ( x e. C |-> B ) ) -> E. x e. C y = B ) |
| 82 |
|
nfv |
|- F/ x y e. D |
| 83 |
|
simpr |
|- ( ( x e. C /\ y = B ) -> y = B ) |
| 84 |
12
|
adantr |
|- ( ( x e. C /\ y = B ) -> x e. A ) |
| 85 |
83 63
|
syl |
|- ( ( x e. C /\ y = B ) -> B e. _V ) |
| 86 |
2
|
elrnmpt1 |
|- ( ( x e. A /\ B e. _V ) -> B e. ran F ) |
| 87 |
84 85 86
|
syl2anc |
|- ( ( x e. C /\ y = B ) -> B e. ran F ) |
| 88 |
83 87
|
eqeltrd |
|- ( ( x e. C /\ y = B ) -> y e. ran F ) |
| 89 |
88
|
3adant1 |
|- ( ( ph /\ x e. C /\ y = B ) -> y e. ran F ) |
| 90 |
19
|
adantr |
|- ( ( x e. C /\ y = B ) -> B =/= (/) ) |
| 91 |
83 90
|
eqnetrd |
|- ( ( x e. C /\ y = B ) -> y =/= (/) ) |
| 92 |
|
nelsn |
|- ( y =/= (/) -> -. y e. { (/) } ) |
| 93 |
91 92
|
syl |
|- ( ( x e. C /\ y = B ) -> -. y e. { (/) } ) |
| 94 |
93
|
3adant1 |
|- ( ( ph /\ x e. C /\ y = B ) -> -. y e. { (/) } ) |
| 95 |
89 94
|
eldifd |
|- ( ( ph /\ x e. C /\ y = B ) -> y e. ( ran F \ { (/) } ) ) |
| 96 |
95 6
|
eleqtrrdi |
|- ( ( ph /\ x e. C /\ y = B ) -> y e. D ) |
| 97 |
96
|
3exp |
|- ( ph -> ( x e. C -> ( y = B -> y e. D ) ) ) |
| 98 |
1 82 97
|
rexlimd |
|- ( ph -> ( E. x e. C y = B -> y e. D ) ) |
| 99 |
98
|
imp |
|- ( ( ph /\ E. x e. C y = B ) -> y e. D ) |
| 100 |
76 81 99
|
syl2anc |
|- ( ( ph /\ y e. ran ( x e. C |-> B ) ) -> y e. D ) |
| 101 |
75 100
|
eqelssd |
|- ( ph -> D = ran ( x e. C |-> B ) ) |
| 102 |
30 31 101
|
f1oeq123d |
|- ( ph -> ( ( F |` C ) : C -1-1-onto-> D <-> ( x e. C |-> B ) : C -1-1-onto-> ran ( x e. C |-> B ) ) ) |
| 103 |
26 102
|
mpbird |
|- ( ph -> ( F |` C ) : C -1-1-onto-> D ) |